Coastal marine habitats constitute hotspots of primary productivity. In temperate regions, this is due both to massive phytoplankton blooms and dense colonisation by macroalgae that mostly store carbon as glycans, contributing substantially to local and global carbon sequestration. Because they control carbon and energy fluxes, algae-degrading microorganisms are crucial for coastal ecosystem functions.
View Article and Find Full Text PDFMacroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans Dsij has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae.
View Article and Find Full Text PDFThe flavobacterial genus Zobellia is considered as a model to study macroalgal polysaccharide degradation. The lack of data regarding its prevalence and abundance in coastal habitats constitutes a bottleneck to assess its ecological strategies. To overcome this issue, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH) methods targeting the 16S rRNA gene were optimized to specifically detect and quantify Zobellia on the surface of diverse macroalgae.
View Article and Find Full Text PDFKelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor.
View Article and Find Full Text PDFPlant- and alga-associated bacterial communities are generally described via 16S rDNA metabarcoding using universal primers. As plastid genomes encode 16S rDNA related to cyanobacteria, these data sets frequently contain >90% plastidial sequences, and the bacterial diversity may be under-sampled. To overcome this limitation we evaluated in silico the taxonomic coverage for four primer combinations targeting the 16S rDNA V3-V4 region.
View Article and Find Full Text PDF