The integration of eDNA metabarcoding into monitoring programs provides valuable information about fish community structures. Despite the growing body of evidence supporting the method's effectiveness in distinguishing fine-scale eDNA signals, there is a limited understanding of eDNA distribution in shallow, well-mixed environments, especially related to sampling depth. We analyzed 167 samples collected from the surface and bottom water at 17 locations of the Belgian Part of the North Sea (BPNS), where the deepest sampling point was 31 m, and compared this to beam trawl catch data collected simultaneously at the same locations.
View Article and Find Full Text PDFEnvironmental impact assessments of marine aggregate extraction are traditionally conducted based on morphological characteristics of macrobenthos, which is time-consuming, labour-intensive and requires specific taxonomic expert knowledge. Bulk DNA metabarcoding is suggested as a promising alternative. This study compares the traditional morphological and the bulk DNA metabarcoding method to assess the impact of sand extraction activities on three sandbanks in the Belgian North Sea.
View Article and Find Full Text PDFDespite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea.
View Article and Find Full Text PDFWe investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, : is predominantly expressed in the indirect flight muscles (IFMs), whereas is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of and compared its phenotype to a line lacking functional We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene.
View Article and Find Full Text PDFMost animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles.
View Article and Find Full Text PDFBacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding.
View Article and Find Full Text PDFThe aim of this study was to investigate the microbial quality of whole Norway lobster (Nephrops norvegicus) and Norway lobster tails to optimize handling conditions. This was done by assessing the total viable count (TVC) and characterizing the dominant microbiota. The cultivable microorganisms were quantified via classical microbiological plating methods.
View Article and Find Full Text PDFBrassinosteroid (BR) hormones control plant growth through acting on both cell expansion and division. Here, we examined the role of BRs in leaf growth using the Arabidopsis BR-deficient mutant constitutive photomorphogenesis and dwarfism (cpd). We show that the reduced size of cpd leaf blades is a result of a decrease in cell size and number, as well as in venation length and complexity.
View Article and Find Full Text PDFThe effect of moisture source and diet on the development and reproduction of the pirate bugs, Orius thripoborus (Hesse) and Orius naivashae (Poppius) (Hemiptera: Anthocoridae) was examined in the laboratory. Both species had been collected in and around sugarcane fields in South Africa. Supplementing eggs of the flour moth Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) with a green bean pod as a moisture source yielded better nymphal survival and faster development, as compared with free water encapsulated in Parafilm, suggesting that the predators may extract extra nutrients from the bean pod.
View Article and Find Full Text PDFMulticellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells.
View Article and Find Full Text PDFA sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea.
View Article and Find Full Text PDFBecause of their sessile life style, plants have evolved the ability to adjust to environmentally harsh conditions. An important aspect of stress adaptation involves the reprogramming of the cell cycle to ensure optimal growth. The atypical E2F transcription factor DP-E2F-like 1 (E2Fe/DEL1) had been found previously to be an important regulator of the endocycle onset.
View Article and Find Full Text PDFSynchronized cell cultures are an indispensable tool for the identification and understanding of key regulators of the cell cycle. Nevertheless, the use of cell cultures has its disadvantages, because it represents an artificial system that does not completely mimic the endogenous conditions that occur in organized meristems. Here, we present a new and easy method for Arabidopsis thaliana root tip synchronization by hydroxyurea treatment.
View Article and Find Full Text PDFAs the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter-dependence of cell-cycle machinery and meristem-organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell-cycle machinery in the shoot apex by expression of a dominant negative allele of the A-type cyclin-dependent kinase (CDK) CDKA;1 in meristematic cells.
View Article and Find Full Text PDFThe mitosis-to-endocycle transition requires the controlled inactivation of M phase-associated cyclin-dependent kinase (CDK) activity. Previously, the B-type CDKB1;1 was identified as an important negative regulator of endocycle onset. Here, we demonstrate that CDKB1;1 copurifies and associates with the A2-type cyclin CYCA2;3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
The endocycle represents an alternative cell cycle that is activated in various developmental processes, including placental formation, Drosophila oogenesis, and leaf development. In endocycling cells, mitotic cell cycle exit is followed by successive doublings of the DNA content, resulting in polyploidy. The timing of endocycle onset is crucial for correct development, because polyploidization is linked with cessation of cell division and initiation of terminal differentiation.
View Article and Find Full Text PDFPrenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins.
View Article and Find Full Text PDFComplete and accurate chromosomal DNA replication is essential for the maintenance of the genetic integrity of all organisms. Errors in replication are buffered by the activation of DNA stress checkpoints; however, in plants, the relative importance of a coordinated induction of DNA repair and cell cycle-arresting genes in the survival of replication mutants is unknown. In a systematic screen for Arabidopsis thaliana E2F target genes, the E2F TARGET GENE 1 (ETG1) was identified as a novel evolutionarily conserved replisome factor.
View Article and Find Full Text PDFExit from the mitotic cell cycle and initiation of cell differentiation frequently coincides with the onset of endoreduplication, a modified cell cycle during which DNA continues to be duplicated in the absence of mitosis. Although the mitotic cell cycle and the endoreduplication cycle share much of the same machinery, the regulatory mechanisms controlling the transition between both cycles remain poorly understood. We show that the A-type cyclin-dependent kinase CDKA;1 and its specific inhibitor, the Kip-related protein, KRP2 regulate the mitosis-to-endocycle transition during Arabidopsis thaliana leaf development.
View Article and Find Full Text PDFEndoreduplication or DNA replication without mitosis is widespread in nature. Well-known examples are fruit fly polytene chromosomes and cereal endosperm. Although endocycles are thought to be driven by the same regulators as those that control the G1-S transition of the mitotic cell cycle, the molecular mechanisms that differentiate mitotically dividing cells from endoreduplicating ones are largely unknown.
View Article and Find Full Text PDFTransgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases (CDKs; B-type) for which no ortholog is found in other kingdoms.
View Article and Find Full Text PDFPreviously we have shown that overexpression of the heterodimeric E2Fa-DPa transcription factor in Arabidopsis thaliana results in ectopic cell division, increased endoreduplication, and an early arrest in development. To gain a better insight into the phenotypic behavior of E2Fa-DPa transgenic plants and to identify E2Fa-DPa target genes, a transcriptomic microarray analysis was performed. Out of 4,390 unique genes, a total of 188 had a twofold or more up- (84) or down-regulated (104) expression level in E2Fa-DPa transgenic plants compared to wild-type lines.
View Article and Find Full Text PDFNew plant cells arise at the meristems, where they divide a few times before they leave the cell-cycle program and start to differentiate. Here we show that the E2Fa-DPa transcription factor of Arabidopsis thaliana is a key regulator determining the proliferative status of plant cells. Ectopic expression of E2Fa induced sustained cell proliferation in normally differentiated cotyledon and hypocotyl cells.
View Article and Find Full Text PDF