Approximately 7000 drums of waste uranium catalyst are currently present in Korea and require an appropriate treatment and waste management strategy. Recently, one such process has been developed and has proven successful at both laboratory and bench scales. The success of the process has culminated in its verification at a pilot plant scale.
View Article and Find Full Text PDFA treatment and volume reduction process for a spent uranium-antimony catalyst has been developed. Targeted removal, immobilization and disposal of the uranium component has been confirmed, thus eliminating the radiological hazard. However, significant concentrations of antimony ([Sb] ≥ 25-50 mg L) remain in effluent from the process, which require removal in compliance with Korean wastewater regulations.
View Article and Find Full Text PDFWe have investigated the suitability of phosphate addition, in the form MHPO (M = Na, K or NH), for the selective removal of uranium from a complex waste effluent. The effluent in question is generated as part of a treatment strategy for a spent uranium catalyst, used in the production of acrylonitrile (Sohio process), which has been in temporary storage in Korea since 2004. Both pH (3.
View Article and Find Full Text PDFFinding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials.
View Article and Find Full Text PDFIn this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite.
View Article and Find Full Text PDF