Publications by authors named "Maegan J Watson"

mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells.

View Article and Find Full Text PDF

The control of mRNA stability is fundamental to gene regulation, and a deeper understanding of this post-transcriptional regulatory step can provide key insights into gene function. Measuring mRNA half-lives directly, however, is challenging. The most common strategies for evaluating mRNA stability and decay involve blocking general transcription and then measuring the decline in mRNA levels over time.

View Article and Find Full Text PDF

Terminal oligopyrimidine (TOP) motifs are sequences at the 5' ends of mRNAs that link their translation to the mTOR Complex 1 (mTORC1) nutrient-sensing signaling pathway. They are commonly regarded as discrete elements that reside on ∼100 mRNAs that mostly encode translation factors. However, the full spectrum of TOP sequences and their prevalence throughout the transcriptome remain unclear, primarily because of uncertainty over the mechanism that detects them.

View Article and Find Full Text PDF