Neutrophils are the most abundant white blood cells in the circulation and serve antimicrobial functions. One of their antimicrobial mechanisms involves the release of neutrophil extracellular traps (NETs), long chromatin fibers decorated with antimicrobial granular proteins that contribute to the elimination of pathogens. However, the release of NETs has also been associated with disease processes.
View Article and Find Full Text PDFCell-free DNA (cf-DNA) concentration in human plasma is often increased after burn and trauma injuries. Two major sources of cf-DNA are the parenchymal cells damaged by the injury and various circulating cells indirectly altered by the response to injury. The cf-DNA originating from neutrophils, also known as circulating neutrophil extracellular traps (cNETs), is of notable interest because cNETs have been associated with pathological processes in other conditions, including cancer, autoimmunity, etc.
View Article and Find Full Text PDFWe report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass.
View Article and Find Full Text PDFNeutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.
View Article and Find Full Text PDFIntercalating fluorescent probes are widely used to visualize DNA in studies on DNA-protein interactions. Some require the presence of adenosine triphosphate (ATP). We have investigated the mechanical properties of DNA stained with the fluorescent intercalating dyes YOYO-1 and YOYO-3 as a function of ATP concentrations (up to 2 mM) by stretching single molecules in nanofluidic channels with a channel cross-section as small as roughly 100×100 nm.
View Article and Find Full Text PDFWe present a nanofluidic device for targeted manipulations in the quarternary structure of single DNA molecules. We demonstrate the folding and unfolding of hairpin-shaped regions, similar to chromatin loops. These loops are stable for minutes at nanochannel junctions.
View Article and Find Full Text PDFWe present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA.
View Article and Find Full Text PDF