The current study describes the investigation of the adsorption NO, NO, and NO on haeckelite boron nitride nanotube doped with Si (Si-doped haeck-BNNT) by means of density functional theory calculation (DFT). The obtained results confirmed the energetic stability of the optimized geometries and revealed that the adsorption of the gas molecules with the nanotube sidewall is a spontaneous process. The calculated work function of Si-doped haeck-BNNT in the presence of gas molecules is greater than that of a bare Si-doped haeck-BNNT sheet.
View Article and Find Full Text PDFGraphene-amino acid interaction is gaining significance mainly based on its possible biomedicine applications. The density functional theory (DFT) calculation and molecular dynamics simulation (MD) are applied to obtain a comprehensive understanding of the adsorption mechanism of three kinds of amino acids, namely, alanine (Ala), glycine (Gly), and valine (Val) over the surface of graphene and functionalized graphene nanosheets. In this study, several analyses such as solvation energy, adsorption energy, intermolecular distances, and charge properties are used to explore the adsorption behavior of amino acid on the nanosheets.
View Article and Find Full Text PDF