In pursuit of an efficient visible light driven photocatalyst for paracetamol degradation in wastewater, we have fabricated the ZnO/g-CN S-Scheme photocatalysts and explored the optimal percentage to form a composite of graphitic carbon nitride (g-CN) with zinc oxide (ZnO) for enhanced performance. Our study aimed to address the urgent need for a catalyst capable of environmentally friendly degradation of paracetamol, a common pharmaceutical pollutant, using visible light conditions. Here, we tailored the band gap of a photocatalyst to match solar radiation as a transformative advancement in environmental catalysis.
View Article and Find Full Text PDFMultifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface.
View Article and Find Full Text PDFAntiviral peptides and antiviral polysaccharides can play a major role in the prevention and treatment of emerging viral health problems. These antiviral compounds are biocompatible, environmentally friendly, non-toxic, and cost-effective, yet are poorly water soluble and vulnerable to enzymatic (protease) degradation within the aggressive intercellular microenvironment. Therefore, they should be properly protected and delivered to viruses and host cells by the well-designed nanocarriers that mimic viruses in terms of size, morphology, and smart function.
View Article and Find Full Text PDFThe COVID-19 pandemic is expanding worldwide. This pandemic associated with COVID-19 placed the spotlight on how bacterial (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
Every day, new information is presented with respect to how to best combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This manuscript sheds light on such recent findings, including new co-factors (i.e.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2021
is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement.
View Article and Find Full Text PDFHere, for the first time, a nanofibrous (NF) wound dressing comprising biomineralized polyacrylonitrile (PAN) nanofibers is developed. In contrast to the majority of the currently available nanofibrous wound dressings that are based on natural polymers, PAN is a synthetic, industrial polymer, which has been rarely considered for this purpose. PAN NFs are first hydrolyzed to allow for tethering of biofunctional agents (here Bovine Serum Albumin (BSA)).
View Article and Find Full Text PDFThe latex monodisperse polystyrene (PS) colloids are important for different advanced applications (e.g. in coating, biotechnology etc.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2019
Given the exponentially expanding water pollution causing water scarcity, there is an urgent need for operative nanotechnological systems that can purify water, with insignificant energy consumption, and rapidly. Here, we introduce a nanocomposite system based on TiO₂ nanoparticles (NPs) and PES nanofibers (NFs) that can adsorb and then photodecompose organic water pollutants such as dye molecules. We evaluate pros and cons of this system with respect to its purification efficiency and structural properties that can be impacted by the photocatalytic activity of the nanofillers.
View Article and Find Full Text PDFChem Commun (Camb)
December 2018
A novel approach to construct a highly active and durable Ni(OH)2 nanoparticle/graphene hybrid electrocatalyst for the oxygen-evolution reaction (OER) is reported. This approach utilized the Ni-loaded, graphene-supported, Zr-carboxylate metal-organic framework (UiO-66-NH2-Ni@G) as a sacrificial pre-catalyst to engender the true catalyst in an electrochemical surface restructuring process. This has resulted in an exceptionally active (η10 = 0.
View Article and Find Full Text PDFPlasmonic dipoles are famous for their strong absorptivity rather than their reflectivity. Here, the as-yet unknown specular reflection and the Brewster effect of ultrafine plasmonic dipoles, metaparticles, are introduced and exploited as the basis of new design rules for advanced applications. A configuration of "Plasmonic metaparticles on a blackbody" is demonstrated and utilized for the design of a tailored perfect-colored absorber and for visual detection of environmental dielectrics that is not readily done by extinction plasmonics.
View Article and Find Full Text PDFHollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.
View Article and Find Full Text PDFIn this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent's properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V₂O₅) nanoparticles were added to the nanofibers.
View Article and Find Full Text PDFWe report on the fabrication, the characterization, and the optical simulation of a gold-silica nanocomposite and present its integration into a broadband anti-reflective coating (ARC) for a silicon substrate. The two-layer ARC consists of a nanocomposite (randomly distributed gold cluster in a silica matrix) and a pure silica film. We capitalize on the large refractive index of the composite to impose an abrupt phase change at the interface of the coating to diminish the light reflection from the substrate through the ultrathin nanocoating.
View Article and Find Full Text PDFThe dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process is an interesting challenge. Simulating the volcano-induced dynamic chemistry of the deep ocean, here we demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customized creation of nanoclusters of zinc peroxide.
View Article and Find Full Text PDFIn this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.
View Article and Find Full Text PDFReduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably.
View Article and Find Full Text PDFWe report on reversible light-controlled conductance switching in devices consisting of multiwalled carbon nanotube (MWCNT)-polymer nanocomposites blended with azobenzene molecules and photoisomerization of the latter. Both the azobenzene molecules and MWCNT, which are functionalized with carboxyl groups (MWCNT-COOH), are embedded independently in a poly(methyl methacrylate) matrix, and thin films are prepared by using a simple spin-coating technique. We demonstrate the feasibility of the present concept with a photocurrent switching amplitude of almost 10%.
View Article and Find Full Text PDFWe demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface.
View Article and Find Full Text PDFPlasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably.
View Article and Find Full Text PDFMaterials (Basel)
February 2014
Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient.
View Article and Find Full Text PDFPlasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible.
View Article and Find Full Text PDFWith increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important.
View Article and Find Full Text PDFThere is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs) have played an important role to pave the way for a new branch of plasmonics, , thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry.
View Article and Find Full Text PDFGreen nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop.
View Article and Find Full Text PDF