Cancer-derived small extracellular vesicles (sEVs) are capable of modifying the tumor microenvironment and promoting tumor progression. Ovarian cancer (OvCa) is a lethal malignancy that preferentially spreads through the abdominal cavity. Thus, the secretion of such vesicles into the peritoneal fluid could be a determinant factor in the dissemination and behavior of this disease.
View Article and Find Full Text PDFBackground: Managing the inflammatory response to SARS-Cov-2 could prevent respiratory insufficiency. Cytokine profiles could identify cases at risk of severe disease.
Methods: We designed a randomized phase II clinical trial to determine whether the combination of ruxolitinib (5 mg twice a day for 7 days followed by 10 mg BID for 7 days) plus simvastatin (40 mg once a day for 14 days), could reduce the incidence of respiratory insufficiency in COVID-19.
Aims: To evaluate echocardiographic and biomarker changes during chemotherapy, assess their ability to early detect and predict cardiotoxicity and to define the best time for their evaluation.
Methods And Results: Seventy-two women with breast cancer (52 ± 9.8 years) treated with anthracyclines (26 also with trastuzumab), were evaluated for 14 months (6 echocardiograms/12 laboratory tests).
Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation.
View Article and Find Full Text PDFObjective: Our study is aimed at evaluating the characteristics of the pelvic floor, assessed through transperineal ultrasound, since it may influence or increase the possibility of having a cesarean delivery, with the objective of acting on those variables that can be modified during pregnancy.
Study Design: Transperineal ultrasound was performed on 109 primiparous pregnant women in their first trimester of pregnancy, recruited between May 2018 and February 2019, with the purpose of studying the hiatus area at rest, retention and Valsalva. We have reassessed them at the end of pregnancy and delivery data were recorded.
Glioblastoma (GBM) is the most invasive and deadliest brain cancer in adults. Its inherent heterogeneity has been designated as the main cause of treatment failure. Thus, a deeper understanding of the diversity that shapes GBM pathobiology is of utmost importance.
View Article and Find Full Text PDFBackground: The vast impact of COVID-19 call for the identification of clinical parameter that can help predict a torpid evolution. Among these, endothelial injury has been proposed as one of the main pathophysiological mechanisms underlying the disease, promoting a hyperinflammatory and prothrombotic state leading to worse clinical outcomes. Leukocytes and platelets play a key role in inflammation and thrombogenesis, hence the objective of the current study was to study whether neutrophil-to-lymphocyte ratio (NLR), platelets-to-lymphocyte ratio (PLR), the systemic immune-inflammation index (SII) as well as the new parameter neutrophil-to-platelet ratio (NPR), could help identify patients who at risk of admission at Intensive Care Units.
View Article and Find Full Text PDFBackground: The kinetics of the antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs to be evaluated since long-term duration of antibody remains largely unknown, particularly in infected healthcare workers (HCW).
Methods: Prospective study, evaluating the longitudinal profile of anti-SARS-CoV-2 antibody titers in a random sample of 331 seropositive healthcare workers (HCW) of Spanish Hospitals Group. Serial measurements of serum IgG-anti-SARS-CoV-2 were obtained at baseline (April-May,2020), and in 2 follow-up visits.
The clinical impact of COVID-19 disease calls for the identification of routine variables to identify patients at increased risk of death. Current understanding of moderate-to-severe COVID-19 pathophysiology points toward an underlying cytokine release driving a hyperinflammatory and procoagulant state. In this scenario, white blood cells and platelets play a direct role as effectors of such inflammation and thrombotic response.
View Article and Find Full Text PDFInfection by SARS-CoV2 has devastating consequences on health care systems. It is a global health priority to identify patients at risk of fatal outcomes. 1955 patients admitted to HM-Hospitales from 1 March to 10 June 2020 due to COVID-19, were were divided into two groups, 1310 belonged to the training cohort and 645 to validation cohort.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive primary brain tumor, with a median survival at diagnosis of 16-20 months. Metabolism represents a new attractive therapeutic target; however, due to high intratumoral heterogeneity, the application of metabolic drugs in GBM is challenging. We characterized the basal bioenergetic metabolism and antiproliferative potential of metformin (MF), dichloroacetate (DCA), sodium oxamate (SOD) and diazo-5-oxo-L-norleucine (DON) in three distinct glioma stem cells (GSCs) (GBM18, GBM27, GBM38), as well as U87MG.
View Article and Find Full Text PDFBackground: Spain has one of the highest incidences of coronavirus disease 2019 (COVID-19) worldwide, so Spanish health care workers (HCW) are at high risk of exposure. Our objective was to determine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody seroprevalence amongst HCW and factors associated with seropositivity.
Methods: A cross-sectional study evaluating 6190 workers (97.
Molecular classification of glioblastoma has enabled a deeper understanding of the disease. The four-subtype model (including Proneural, Classical, Mesenchymal and Neural) has been replaced by a model that discards the Neural subtype, found to be associated with samples with a high content of normal tissue. These samples can be misclassified preventing biological and clinical insights into the different tumor subtypes from coming to light.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is one of the most aggressive and vascularized brain tumors in adults, with a median survival of 20.9 months. In newly diagnosed and recurrent GBM, bevacizumab demonstrated an increase in progression-free survival, but not in overall survival.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive and frequent primary brain tumor in adults with a median overall survival of 15 months. Tumor recurrence and poor prognosis are related to cancer stem cells (CSCs), which drive resistance to therapies. A common characteristic in GBM is gene loss, located close to the cluster of genes at Ch9p21.
View Article and Find Full Text PDFPediatric Central Nervous System (CNS) tumors are the most fatal cancer diseases in childhood. Due to their localization and infiltrative nature, some tumor resections or biopsies are not feasible. In those cases, the use of minimally invasive methods as diagnostic, molecular marker detection, prognostic or monitoring therapies are emerging.
View Article and Find Full Text PDFThis work summarizes the main principles and some of the most significant results of straining flow spinning (SFS), a technology developed originally by the authors of this work. The principles on which the technology is based, inspired by the natural spinning system of silkworms and spiders, are presented, as well as some of the main achievements of the technique. Among these achievements, spinning under environmentally friendly conditions, obtaining high-performance fibers, and imparting the fibers with emerging properties such as supercontraction are discussed.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established.
View Article and Find Full Text PDFThe conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from C labeled cocoons. The short-range microstructure of the fibers is assessed through C CP/MAS in air and C DD/MAS in water, and the main microstructural features are identified and quantified.
View Article and Find Full Text PDFNanotechnology
September 2018
Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified.
View Article and Find Full Text PDFIn the last years, there has been an increasing interest in bioinspired approaches for different applications, including the spinning of high performance silk fibers. Bioinspired spinning is based on the natural spinning system of spiders and worms and requires combining changes in the chemical environment of the proteins with the application of mechanical stresses. Here we present the novel straining flow spinning (SFS) process and prove its ability to produce high performance fibers under mild, environmentally friendly conditions, from aqueous protein dopes.
View Article and Find Full Text PDFUnlabelled: At present, effective therapies to repair the central nervous system do not exist. Biomaterials might represent a new frontier for the development of neurorestorative therapies after brain injury and degeneration. In this study, an in situ gelling silk fibroin hydrogel was developed via the sonication-induced gelation of regenerated silk fibroin solutions.
View Article and Find Full Text PDFSpider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber.
View Article and Find Full Text PDFThe extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks.
View Article and Find Full Text PDF