Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly.
View Article and Find Full Text PDFThis study explored the effect of extracellular polymeric substance (EPS) production on the performance of membrane-based biofilm reactors. Changing EPS production was induced by eliminating one of the main EPS polysaccharides, i.e.
View Article and Find Full Text PDFIndium-tin oxide (ITO) is used in a variety of applications due to its electrical conductivity and optical transparency. Moreover, ITO coated glass is a common working electrode for spectroelectrochemistry. Thus, the ITO substrates should exhibit well-understood spectroscopic characteristics.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2022
Deep learning (DL) based semantic segmentation methods have achieved excellent performance in biomedical image segmentation, producing high quality probability maps to allow extraction of rich instance information to facilitate good instance segmentation. While numerous efforts were put into developing new DL semantic segmentation models, less attention was paid to a key issue of how to effectively explore their probability maps to attain the best possible instance segmentation. We observe that probability maps by DL semantic segmentation models can be used to generate many possible instance candidates, and accurate instance segmentation can be achieved by selecting from them a set of "optimized" candidates as output instances.
View Article and Find Full Text PDFMyxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production.
View Article and Find Full Text PDFThere are many hydrated surface niches that are neither static nor continuously flowing that are colonized by microbes such as bacteria. Such periodic hydrodynamic regimes are distinct from aquatic systems where microbial dissemination is reasonably predicted by assuming continuous flow or static systems where motile microbes largely control their own fate. Here we show how non-motile bacteria exhibit rapid, dispersive bursts of movement over surfaces using transient confluent hydration from the environment, which we term "surface hydrodispersion" where cells traverse thousands of cell lengths within minutes.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P.
View Article and Find Full Text PDFGram-negative bacteria have evolved an elaborate pathway to sense and respond to exposure to β-lactam antibiotics. The β-lactam antibiotics inhibit penicillin-binding proteins, whereby the loss of their activities alters/damages the cell-wall peptidoglycan. Bacteria sense this damage and remove the affected peptidoglycan into complex recycling pathways.
View Article and Find Full Text PDFis among the many bacteria that swarm, where groups of cells coordinate to move over surfaces. It has been challenging to determine the behavior of single cells within these high-cell-density swarms. To track individual cells within swarms, we imaged a fluorescently labeled subset of the larger population.
View Article and Find Full Text PDFThe interplay between the activities of lytic transglycosylases (LTs) and penicillin-binding proteins (PBPs) is critical for the health of the bacterial cell wall. Bulgecin A (a natural-product inhibitor of LTs) potentiates the activity of β-lactam antibiotics (inhibitors of PBPs), underscoring this intimate mechanistic interdependence. Bulgecin A in the presence of an appropriate β-lactam causes bulge deformation due to the formation of aberrant peptidoglycan at the division site of the bacterium.
View Article and Find Full Text PDFThe bulgecins are iminosaccharide secondary metabolites of the Gram-negative bacterium Paraburkholderia acidophila and inhibitors of lytic transglycosylases of bacterial cell-wall biosynthesis and remodeling. The activities of the bulgecins are intimately intertwined with the mechanism of a cobiosynthesized β-lactam antibiotic. β-Lactams inhibit the penicillin-binding proteins, enzymes also critical to cell-wall biosynthesis.
View Article and Find Full Text PDFThere is a general lack of understanding about how communities of bacteria respond to exogenous toxins such as antibiotics. Most of our understanding of community-level stress responses comes from the study of stationary biofilm communities. Although several community behaviors and production of specific biomolecules affecting biofilm development and associated behavior have been described for and other bacteria, we have little appreciation for the production and dispersal of secreted metabolites within the 2D and 3D spaces they occupy as they colonize, spread, and grow on surfaces.
View Article and Find Full Text PDFBacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge.
View Article and Find Full Text PDFLinks between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells.
View Article and Find Full Text PDF