The primary challenge of implementing DNA nanostructures in biomedical applications lies in their vulnerability to nuclease degradation and variations in ionic strength. Furthermore, the size minimization of DNA and RNA nanostructures is limited by the stability of the DNA and RNA duplexes. This study presents a solution to these problems through the use of acyclic (l)-threoninol nucleic acid (aTNA), an artificial acyclic nucleic acid, which offers enhanced resilience under physiological conditions.
View Article and Find Full Text PDFAntibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug.
View Article and Find Full Text PDFCamelid single-domain antibody fragments, also called nanobodies, constitute a class of binders that are small in size (~15 kDa) and possess antigen-binding properties similar to their antibody counterparts. Facile production of recombinant nanobodies in several microorganisms has made this class of binders attractive within the field of molecular imaging. Particularly, their use in super-resolution microscopy has improved the spatial resolution of molecular targets due to a smaller linkage error.
View Article and Find Full Text PDFOligonucleotides are increasingly being used as a programmable connection material to assemble molecules and proteins in well-defined structures. For the application of such assemblies for in vivo diagnostics or therapeutics it is crucial that the oligonucleotides form highly stable, non-toxic, and non-immunogenic structures. Only few oligonucleotide derivatives fulfil all of these requirements.
View Article and Find Full Text PDF