Biochemical pathways are compartmentalized in living cells. This permits each cell to maintain chemical compositions that differ between the cytosol, intracellular organelles and the external environment. Achieving this requires each compartment to be very selective in what is allowed to enter and leave.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2015
Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains.
View Article and Find Full Text PDFCsdA is one of five E. coli DEAD-box helicases and as a cold-shock protein assists RNA structural remodeling at low temperatures. The helicase has been shown to catalyze duplex unwinding in an ATP-dependent way and accelerate annealing of complementary RNAs, but detailed kinetic analyses are missing.
View Article and Find Full Text PDFIn Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)(15) and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site.
View Article and Find Full Text PDFFolding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates.
View Article and Find Full Text PDFIn enteric bacteria, many small regulatory RNAs (sRNAs) associate with the RNA chaperone host factor Q (Hfq) and often require the protein for regulation of target mRNAs. Previous studies suggested that the hexameric Escherichia coli Hfq (Hfq(Ec)) binds sRNAs on the proximal site, whereas the distal site has been implicated in Hfq-mRNA interactions. Employing a combination of small angle X-ray scattering, nuclear magnetic resonance and biochemical approaches, we report the structural analysis of a 1:1 complex of Hfq(Ec) with a 34-nt-long subsequence of a natural substrate sRNA, DsrA (DsrA(34)).
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2011
The structure of full-length host factor Qβ (Hfq) from Escherichia coli obtained from a crystal belonging to space group P1, with unit-cell parameters a = 61.91, b = 62.15, c = 81.
View Article and Find Full Text PDFThe hexameric Escherichia coli RNA chaperone Hfq (Hfq(Ec)) is involved in riboregulation of target mRNAs by small trans-encoded RNAs. Hfq proteins of different bacteria comprise an evolutionarily conserved core, whereas the C-terminus is variable in length. Although the structure of the conserved core has been elucidated for several Hfq proteins, no structural information has yet been obtained for the C-terminus.
View Article and Find Full Text PDFAt low temperature, translational activation of rpoS mRNA, encoding the stationary phase sigma-factor, sigma(S), involves the small regulatory RNA (sRNA) DsrA and the RNA chaperone Hfq. The Hfq-mediated DsrA-rpoS interaction relieves an intramolecular secondary structure that impedes ribosome access to the rpoS ribosome binding site. In addition, DsrA/rpoS duplex formation creates an RNase III cleavage site within the duplex.
View Article and Find Full Text PDFAMPA-type ionotropic glutamate receptors generally display high stereoselectivity in agonist binding. However, the stereoisomers of 2-amino-3-(4-hydroxy-1,2,5-thiadiazol-3-yl)propionic acid (TDPA) have similar enantiopharmacology. To understand this observation, we have determined the X-ray structures of ( R)-TDPA and ( S)-TDPA in complex with the ligand-binding core of iGluR2 and investigated the binding pharmacology at AMPA and kainate receptors.
View Article and Find Full Text PDFThe canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use electrical, chemical, and crystallographic experiments on the AMPA-sensitive GluR2 receptor, defining the conformational rearrangements of the agonist binding cores that occur upon desensitization of this ligand-gated ion channel.
View Article and Find Full Text PDF