Publications by authors named "Madleen Sallmann"

Mononuclear, O2-activating nonheme iron enzymes are a fascinating class of metalloproteines, capable of realizing the most different reactions, ranging from C-H activation, via O atom transfer to C-C bond cleavage, in the course of O2 activation. They can lead us the way to achieve similar reactions with comparable efficiency and selectivity in chemical laboratories, which would be highly desirable aiming at accessing value-added products or to achieve degradation of unwanted compounds. Hence, these enyzmes motivate attempts to construct artificial low-molecular weight analogues, mimicking structural or functional characteristics.

View Article and Find Full Text PDF

The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene.

View Article and Find Full Text PDF

Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up.

View Article and Find Full Text PDF