Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized.
View Article and Find Full Text PDFIntroduction: Although gene-level copy number alterations have been studied as a potential biomarker of immunotherapy efficacy in NSCLC, the impact of aneuploidy burden and chromosomal arm-level events on immune checkpoint inhibitor (ICI) efficacy in NSCLC is uncertain.
Methods: Patients who received programmed cell death protein 1 or programmed death-ligand 1 (PD-L1) inhibitor at two academic centers were included. Across all 22 chromosomes analyzed, an arm was considered altered if at least 70% of its territory was either gained or deleted.
Despite the wide use of immune checkpoint inhibition for the treatment of melanoma, the mechanisms leading to long-term stable disease are incompletely understood. Patients with metastatic melanoma who had received ipilimumab alone or ipilimumab plus nivolumab 2+years prior and attained at least 6 months of stable disease were identified. Positron emission tomography/computed tomography (PET/CT) was performed.
View Article and Find Full Text PDFUnlike other cholera-like toxins that contain separate binding/translocation and catalytic subunits, C3-like mono-ADP-ribosyltransferases consist of a single subunit that serves both functions. The manner whereby C3 toxins reach the host cell cytoplasm is poorly understood and was addressed in this study by monitoring the fate of fluorescently labeled C3larvinA. Following binding to the macrophage membrane in a discontinuous punctate pattern, the toxin was internalized, traversing the endocytic pathway to reach lysosomes.
View Article and Find Full Text PDFThe anti-virulence strategy is designed to prevent bacterial virulence factors produced by pathogenic bacteria from initiating and sustaining an infection. One family of bacterial virulence factors is the mono-ADP-ribosyltransferase toxins, which are produced by pathogens as tools to compromise the target host cell. These toxins are bacterial enzymes that exploit host cellular NAD+ as the donor substrate to modify an essential macromolecule acceptor target in the host cell.
View Article and Find Full Text PDFBackground: An elevated peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) is a negative prognostic marker for patients with non-small cell lung cancer (NSCLC) receiving chemotherapy and immune checkpoint inhibitors. Whether dNLR is also associated with clinical outcomes to first-line pembrolizumab among patients with NSCLC and a programmed cell death ligand 1 (PD-L1) Tumor Proportion Score (TPS) of ≥50% is uncertain. How dNLR relates to the tumor immune microenvironment is also unclear.
View Article and Find Full Text PDFUnlabelled: Oral leukoplakia is common and may, in some cases, progress to carcinoma. Proliferative leukoplakia is a progressive, often multifocal subtype with a high rate of malignant transformation compared with the more common localized leukoplakia. We hypothesized that the immune microenvironment and gene expression patterns would be distinct for proliferative leukoplakia compared with localized leukoplakia.
View Article and Find Full Text PDFAmerican Foulbrood, caused by , is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections.
View Article and Find Full Text PDFC3larvinA was recently described as a mono-ADP-ribosyltransferase (mART) toxin from the enterobacterial repetitive intergenic consensus (ERIC) III genotype of the agricultural pathogen, Paenibacillus larvae. It was shown to be the full-length, functional version of the previously described C3larvintrunc toxin, due to a 33-residue extension of the N-terminus of the protein. In the present study, a series of deletions and substitutions were made to the N-terminus of C3larvinA to assess the contribution of the α1-helix to toxin structure and function.
View Article and Find Full Text PDFC3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA.
View Article and Find Full Text PDFComplex oxides with the pyrochlore (ABO) and defect-fluorite ((A,B)O) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (AHfO) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in AHfO pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD).
View Article and Find Full Text PDF