Late-stage clinical trial failures increase the overall cost and risk of bringing new drugs to market. Determining the pharmacokinetic (PK) drivers of toxicity and efficacy in preclinical studies and early clinical trials supports quantitative optimization of drug schedule and dose through computational modeling. Additionally, this approach permits prioritization of lead candidates with better PK properties early in development.
View Article and Find Full Text PDFA fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response.
View Article and Find Full Text PDFContact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests.
View Article and Find Full Text PDFThe basic reproductive number (R) and superspreading potential are key epidemiological parameters that inform our understanding of a disease's transmission. Often these values are estimated using the data obtained from contact tracing studies. Here we performed a simulation study to understand how incomplete data due to preferential contact tracing impacted the accuracy and inferences about the transmission of SARS-CoV-2.
View Article and Find Full Text PDFAs the COVID-19 pandemic progresses, widespread community transmission of SARS-CoV-2 has ushered in a volatile era of viral immune evasion rather than the much-heralded stability of "endemicity" or "herd immunity." At this point, an array of viral strains has rendered essentially all monoclonal antibody therapeutics obsolete and strongly undermined the impact of vaccinal immunity on SARS-CoV-2 transmission. In this work, we demonstrate that antibody escape resulting in evasion of pre-existing immunity is highly evolutionarily favored and likely to cause waves of short-term transmission.
View Article and Find Full Text PDFContact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests (with a high false negative rate) due to lack of accessibility to PCR tests.
View Article and Find Full Text PDFThe rapid emergence of immune-evading viral variants of SARS-CoV-2 calls into question the practicality of a vaccine-only public-health strategy for managing the ongoing COVID-19 pandemic. It has been suggested that widespread vaccination is necessary to prevent the emergence of future immune-evading mutants. Here, we examined that proposition using stochastic computational models of viral transmission and mutation.
View Article and Find Full Text PDFSARS-CoV-2 vaccinations were initially shown to substantially reduce risk of severe disease and death. However, pharmacokinetic (PK) waning and rapid viral evolution degrade neutralizing antibody (nAb) binding titers, causing loss of vaccinal protection. Additionally, there is inter-individual heterogeneity in the strength and durability of the vaccinal nAb response.
View Article and Find Full Text PDFIn the face of a long-running pandemic, understanding the drivers of ongoing SARS-CoV-2 transmission is crucial for the rational management of COVID-19 disease burden. Keeping schools open has emerged as a vital societal imperative during the pandemic, but in-school transmission of SARS-CoV-2 can contribute to further prolonging the pandemic. In this context, the role of schools in driving SARS-CoV-2 transmission acquires critical importance.
View Article and Find Full Text PDFThe development and deployment of several SARS-CoV-2 vaccines in a little over a year is an unprecedented achievement of modern medicine. The high levels of efficacy against transmission for some of these vaccines makes it feasible to use them to suppress SARS-CoV-2 altogether in regions with high vaccine acceptance. However, viral variants with reduced susceptibility to vaccinal and natural immunity threaten the utility of vaccines, particularly in scenarios where a return to pre-pandemic conditions occurs before the suppression of SARS-CoV-2 transmission.
View Article and Find Full Text PDFThe rapid emergence and expansion of novel SARS-CoV-2 variants threatens our ability to achieve herd immunity for COVID-19. These novel SARS-CoV-2 variants often harbor multiple point mutations, conferring one or more evolutionarily advantageous traits, such as increased transmissibility, immune evasion and longer infection duration. In a number of cases, variant emergence has been linked to long-term infections in individuals who were either immunocompromised or treated with convalescent plasma.
View Article and Find Full Text PDFThe duration of natural immunity in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a matter of some debate in the literature at present. For example, in a recent publication characterizing SARS-CoV-2 immunity over time, the authors fit pooled longitudinal data, using fitted slopes to infer the duration of SARS-CoV-2 immunity. In fact, such approaches can lead to misleading conclusions as a result of statistical model-fitting artifacts.
View Article and Find Full Text PDFAs the COVID-19 pandemic drags into its second year, there is hope on the horizon, in the form of SARS-CoV-2 vaccines which promise disease suppression and a return to pre-pandemic normalcy. In this study we critically examine the basis for that hope, using an epidemiological modeling framework to establish the link between vaccine characteristics and effectiveness in bringing an end to this unprecedented public health crisis. Our findings suggest that a return to pre-pandemic social and economic conditions without fully suppressing SARS-CoV-2 will lead to extensive viral spread, resulting in a high disease burden even in the presence of vaccines that reduce risk of infection and mortality.
View Article and Find Full Text PDFClaims that in-person schooling has not amplified SARS-CoV-2 transmission are based on similar infection rates in schools and their surrounding communities and limited numbers of documented in-school transmission events. Simulations assuming high in-school transmission suggest that these metrics cannot exclude the possibility that transmission in schools exacerbated overall pandemic risks.
View Article and Find Full Text PDFBackground: The word 'pandemic' conjures dystopian images of bodies stacked in the streets and societies on the brink of collapse. Despite this frightening picture, denialism and noncompliance with public health measures are common in the historical record, for example during the 1918 Influenza pandemic or the 2015 Ebola epidemic. The unique characteristics of SARS-CoV-2-its high basic reproduction number (R), time-limited natural immunity and considerable potential for asymptomatic spread-exacerbate the public health repercussions of noncompliance with interventions (such as vaccines and masks) to limit disease transmission.
View Article and Find Full Text PDFThe spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework.
View Article and Find Full Text PDFAs the world grapples with the ongoing COVID-19 pandemic, a particularly thorny set of questions surrounds the reopening of primary and secondary (K-12) schools. The benefits of in-person learning are numerous, in terms of education quality, mental health, emotional well-being, equity and access to food and shelter. Early reports suggested that children might have reduced susceptibility to COVID-19, and children have been shown to experience fewer complications than older adults.
View Article and Find Full Text PDFThe mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia.
View Article and Find Full Text PDF