Evaluating the local immune microenvironment of the canine nasal cavity can be important for investigating normal tissue health and disease conditions, particularly those associated with local inflammation. We have optimized a technique to evaluate the local nasal immune microenvironment of dogs via serial nasal lavage. Briefly, with dogs under anesthesia and positioned in sternal recumbency, prewarmed sterile saline is flushed into the affected nostril using a flexible soft rubber catheter.
View Article and Find Full Text PDFPurpose: Type 2 diabetes is characterized by reduced insulin sensitivity which correlates with increased circulating BCAA. These experiments investigated the effects of insulin resistance with and without excess BCAA on myotube insulin sensitivity and L-type amino acid transporter-1 (LAT1).
Methods: C2C12 myotubes were treated with or without excess BCAA for 1 or 6 days, both with and without insulin resistance.
Glutamine is an amino acid previously linked with improved skeletal muscle metabolism and insulin signaling, however, past observations often use cell culture models with only supraphysiological concentrations. Additionally, past reports have yet to simultaneously investigate both metabolic outcomes and insulin signaling. The present report utilized cell culture experiments and measured the effects of both physiological and supraphysiological levels of glutamine on myotube metabolism and insulin signaling/resistance.
View Article and Find Full Text PDFPurpose: Branched-chain amino acids (BCAA) have been shown to enhance several cellular signaling pathways including protein synthesis and mitochondrial biogenesis, yet population data demonstrate a correlation between circulating BCAA and severity of insulin resistance which has been hypothesized to be, in part, a byproduct of BCAA inhibition of mitochondrial function. The purpose of this study is to examine the effect of a BCAA mixture on muscle metabolism and related gene expression in vitro.
Methods: C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.
Aims: Branched-chain amino acids (BCAA) are often emphasized in the diets of avid exercisers, yet population data demonstrates a correlation between circulating BCAA and insulin resistance. However, it is unclear if BCAA independently promote insulin resistance in otherwise healthy cells. The purpose of this study is to examine the effect of a BCAA mixture on muscle insulin signaling in vitro in both insulin resistant and sensitive cells.
View Article and Find Full Text PDFPrevious studies have shown various metabolic stressors such as saturated fatty acids (SFA) and excess insulin promote insulin resistance in metabolically meaningful cell types (such as skeletal muscle). Additionally, these stressors have been linked with suppressed mitochondrial metabolism, which is also a common characteristic of skeletal muscle of diabetics. This study characterized the individual and combined effects of excess lipid and excess insulin on myotube metabolism and related metabolic gene and protein expression.
View Article and Find Full Text PDFPopulation data have consistently demonstrated a correlation between circulating branched-chain amino acids (BCAA) and insulin resistance. Most recently valine catabolite, 3-hydroxyisobutyrate, has emerged as a potential cause of BCAA-mediated insulin resistance; however, it is unclear if valine independently promotes insulin resistance. It is also unclear if excess valine influences the ability of cells to degrade BCAA.
View Article and Find Full Text PDFUncarboxylated osteocalcin (uOC) is a circulating bone matrix protein, which has previously been shown to regulate glucose uptake and systemic metabolism. However, the cellular mechanism by which uOC acts has yet to be elucidated. C2C12 mouse myotubes were treated for 72 h with uOC (1-100 ng/mL).
View Article and Find Full Text PDFElevated circulating branched-chain amino acids (BCAA) such as leucine have been consistently correlated with increasing severity of insulin resistance across numerous populations. BCAA may promote insulin resistance through either mTOR-mediated suppression of insulin receptor substrate-1 or through the accumulation of toxic BCAA catabolites. Although the link between circulating BCAA and insulin resistance has been consistent, it has yet to be concluded if BCAA causally contribute to the development or worsening of insulin resistance.
View Article and Find Full Text PDFMetformin has antihyperglycemic properties and is a commonly prescribed drug for type II diabetes mellitus. Metformin functions in part by activating 5'-AMP-activated protein kinase, reducing hepatic gluconeogenesis and blood glucose. Metformin also upregulates peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α).
View Article and Find Full Text PDFBranched-chain amino acids (BCAAs) are essential in the diet and may provide benefit for those who partake in regular physical activity and resistance training, yet circulating BCAAs have been repeatedly shown to correlate with severity of insulin resistance in obese/diseased populations. Recently, the valine catabolite 3-hydroxyisobuterate (3HIB) was shown to promote insulin resistance in skeletal muscle by increasing lipid content in vivo. The purpose of this study was to investigate the mechanistic effects of 3HIB on skeletal muscle insulin signaling, metabolism, and related gene expression in vitro.
View Article and Find Full Text PDF