The conjugated polymer's backbone conformation dictates the delocalization of electrons, ultimately affecting its optoelectronic properties. Most conjugated polymers can be viewed as semirigid rods with their backbone embedded among long alkyl side chains. Thus, it is challenging to experimentally quantify the conformation of a conjugated backbone.
View Article and Find Full Text PDFTo increase our understanding of the factors that influence formation of disinfection byproducts (DBPs) in rural drinking systems, we investigated the spatial and seasonal variation in trihalomethane (THM) and haloacetic acid (HAA) concentrations in relation to various chemical and physical variables in a rural public drinking water system in Martin County, Kentucky, USA. We collected drinking water samples from 97 individual homes over the course of one year and analyzed them for temperature, electrical conductivity, pH, free chlorine, total chlorine, THMs (chloroform, bromodichloromethane, dibromochloromethane, dichlorobromomethane, and bromoform) and HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid). Spatial autocorrelation analysis showed only weak overall clustering for HAA concentrations and none for THMs.
View Article and Find Full Text PDFThe optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To address this, a facile approach to solution processing using blends of PDPP-TVT and PTPA-3CN is developed, resulting in a 3.
View Article and Find Full Text PDFGels of semiconducting polymers have many potential applications, including biomedical devices and sensors. Here, we report a self-assembled gel system consisting of isoindigo-based semiconducting polymers with galactose side chains in benign, alcohol-based solvents. Because of the carbohydrate side chains, the modified isoindigo polymers are soluble in alcohols.
View Article and Find Full Text PDFSemiconducting polymers are at the forefront of next-generation organic electronics due to their robust mechanical and optoelectronic properties. However, their extended π-conjugation often leads to materials with low solubilities in common organic solvents, thus requiring processing in high-boiling-point and toxic halogenated solvents to generate thin-film devices. To address this environmental concern, a natural product-inspired side-chain engineering approach was used to incorporate galactose-containing moieties into semiconducting polymers toward improved processability in greener solvents.
View Article and Find Full Text PDF