Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function.
View Article and Find Full Text PDFFront Mol Neurosci
October 2023
Introduction: Chronic itch is a central symptom of atopic dermatitis. Cutaneous afferent neurons express receptors interleukins (IL)-4, IL-13, and IL-33, which are type 2 cytokines that are elevated in atopic dermatitis. These neuronal cytokine receptors were found to be required in several murine models of itch.
View Article and Find Full Text PDFBackground: Chronic pruritus, or itch, is common and debilitating, but the neuroimmune mechanisms that drive chronic itch are only starting to be elucidated. Recent studies demonstrate that the IL-33 receptor (IL-33R) is expressed by sensory neurons. However, whether sensory neuron-restricted activity of IL-33 is necessary for chronic itch remains poorly understood.
View Article and Find Full Text PDFItch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations.
View Article and Find Full Text PDFRecent studies suggest that mitochondria can be transferred between cells to support the survival of metabolically compromised cells. However, whether intercellular mitochondria transfer occurs in white adipose tissue (WAT) or regulates metabolic homeostasis in vivo remains unknown. We found that macrophages acquire mitochondria from neighboring adipocytes in vivo and that this process defines a transcriptionally distinct macrophage subpopulation.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a widespread, chronic skin disease associated with aberrant allergic inflammation. Current treatments involve either broad or targeted immunosuppression strategies. However, enhancing the immune system to control disease remains untested.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a highly prevalent, itchy inflammatory skin disorder that is thought to arise from a combination of skin barrier defect and immune dysregulation. Kallikreins (KLK), a family of serine proteases with a diverse array of homeostatic functions, including skin desquamation and innate immunity, are hypothesized to contribute to AD pathogenesis. However, their precise role in AD has not been clearly defined.
View Article and Find Full Text PDFAlthough connections between the immune and nervous systems have long been recognized, the precise mechanisms that underlie this relationship are just starting to be elucidated. Advances in sensory biology have unveiled novel mechanisms by which inflammatory cytokines promote itch and pain sensations to coordinate host-protective behavioral responses. Conversely, new evidence has emphasized the importance of immune cell regulation by sensory neurons.
View Article and Find Full Text PDFClassical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis.
View Article and Find Full Text PDFRelentless, repetitive itching and scratching is a debilitating feature of many chronic inflammatory skin disorders such as atopic dermatitis. While well known clinically, this itch-scratch cycle has historically lacked in-depth mechanistic understanding. However, recent advances at the interface of itch neurobiology and skin immunology have shed new light on this phenomenon.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2018
Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene () expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism.
View Article and Find Full Text PDFAlthough both persistent itch and inflammation are commonly associated with allergic contact dermatitis (ACD), it is not known if they are mediated by shared or distinct signaling pathways. Here we show that both TRPA1 and TRPV1 channels are required for generating spontaneous scratching in a mouse model of ACD induced by squaric acid dibutylester (SADBE), a small molecule hapten, through directly promoting the excitability of pruriceptors. TRPV1 but not TRPA1 channels protect the skin inflammation, as genetic ablation of TRPV1 function or pharmacological ablation of TRPV1-positive sensory nerves promotes cutaneous inflammation in the SADBE-induced ACD.
View Article and Find Full Text PDFMammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood.
View Article and Find Full Text PDFBackground: Chronic itch is a highly debilitating symptom that underlies many medical disorders with no universally effective treatments. Although unique neuronal signaling cascades in the sensory ganglia and spinal cord have been shown to critically promote the pathogenesis of chronic itch, the role of skin-associated cells remains poorly understood.
Objective: We sought to examine the cutaneous mechanisms underlying transient receptor potential vanilloid 4 (TRPV4)-mediated allergic and nonallergic chronic itch.
The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall.
View Article and Find Full Text PDFCellular and molecular mediators of immune responses are increasingly implicated in acute and chronic pain pathophysiologies. Here we demonstrate that passive cutaneous IgE/Ag anaphylaxis provokes increased thermal sensitivity in the hind paw tissue of mice. The murine anti-DNP IgE antibodies SPE-7 and ɛ26 are known to induce differential cytokine production in bone marrow cultured mast cells in vitro without antigen challenge.
View Article and Find Full Text PDFMeasuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked inflammation by applying an accurate force on very specific areas of the skin. An electronic von Frey apparatus allows precise assessment of mouse hind paw withdrawal thresholds that are not limited by the available filament sizes in contrast to classical von Frey measurements.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2012
Mast cells mediate allergies, hypersensitivities, host defense, and venom neutralization. An area of recent interest is the contribution of mast cells to inflammatory pain. Here we found that specific, local activation of mast cells produced plantar hyperalgesia in mice.
View Article and Find Full Text PDF