Proc Natl Acad Sci U S A
September 2024
Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution.
View Article and Find Full Text PDFUsing high-resolution 3D printing, a novel class of microneedle array patches (MAPs) is introduced, called latticed MAPs (L-MAPs). Unlike most MAPs which are composed of either solid structures or hollow needles, L-MAPs incorporate tapered struts that form hollow cells capable of trapping liquid droplets. The lattice structures can also be coated with traditional viscous coating formulations, enabling both liquid- and solid-state cargo delivery, on a single patch.
View Article and Find Full Text PDFThe intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved.
View Article and Find Full Text PDF