Rapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size.
View Article and Find Full Text PDFErwinia amylovora is a plant pathogen belonging to the Enterobacteriaceae family, a family containing many plant and animal pathogens. Herein, we announce nine genome sequences of E. amylovora bacteriophages isolated from infected apple trees along the Wasatch Front in Utah.
View Article and Find Full Text PDFA rapid and accurate diagnosis of the species and antibiotic resistance of bacteria in septic blood is vital to increase survival rates of patients with bloodstream infections, particularly those with carbapenem-resistant enterobacteriaceae (CRE) infections. The extremely low levels in blood (1 to 100CFU/ml) make rapid diagnosis difficult. In this study, very low concentrations of bacteria (6 to 200CFU/ml) were separated from 7ml of whole blood using rapid sedimentation in a spinning hollow disk that separated plasma from red and white cells, leaving most of the bacteria suspended in the plasma.
View Article and Find Full Text PDFTo rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min.
View Article and Find Full Text PDF