Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility and quality. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD.
View Article and Find Full Text PDFSince the seminal work on MoS, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.
View Article and Find Full Text PDFDefects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages.
View Article and Find Full Text PDFTwo-dimensional transition-metal dichalcogenides (TMDs) have attracted tremendous interest due to the unusual electronic and optoelectronic properties of isolated monolayers and the ability to assemble diverse monolayers into complex heterostructures. To understand the intrinsic properties of TMDs and fully realize their potential in applications and fundamental studies, high-purity materials are required. Here, we describe the synthesis of TMD crystals using a two-step flux growth method that eliminates a major potential source of contamination.
View Article and Find Full Text PDFThe ability to engineer atomically thin nanoscale lateral junctions is critical to lay the foundation for future two-dimensional (2D) device technology. However, the traditional approach to creating a heterojunction by direct growth of a heterostructure of two different materials constrains the available band offsets, and it is still unclear if large built-in potentials are attainable for 2D materials. The electronic properties of atomically thin semiconducting transition metal dichalcogenides (TMDs) are not static, and their exciton binding energy and quasiparticle band gap depend strongly on the proximal environment.
View Article and Find Full Text PDFThe emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator composed of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure.
View Article and Find Full Text PDF