Publications by authors named "Madiha Saeed"

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT.

View Article and Find Full Text PDF

Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (NaSO) as relatively stable S producing species along with a soft etchant source KCl.

View Article and Find Full Text PDF

Vaccination immunotherapy has revolutionized cancer treatment modalities. Although the immunomodulatory adjuvant generally employs for potentiating vaccine response, systemic administration may drive immune-related side effects, even immune tolerance. Therefore, tunable immunoadjuvants are highly desirable to simultaneously stimulate the immune response and mitigate systemic toxicity.

View Article and Find Full Text PDF

The critical challenge for cancer vaccine-induced T-cell immunity is the sustained activation of antigen cross-presentation in antigen-presenting cells (APCs) with innate immune stimulation. In this study, it is first discovered that the clinically used magnetic contrast agents, iron oxide nanoparticles (IONPs), markedly augment the type-I interferon (IFN-I) production profile of the stimulator of interferon genes (STING) agonist MSA-2 and achieve a 16-fold dosage-sparing effect in the human STING haplotype. Acid-ionizable copolymers are coassembled with IONPs and MSA-2 into iron nanoadjuvants to concentrate STING activation in the draining lymph nodes.

View Article and Find Full Text PDF

Glioblastoma (GBM) therapy is severely impaired by the blood-brain barrier (BBB) and invasive tumor growth in the central nervous system. To improve GBM therapy, we herein presented a dual-targeting nanotheranostic for second near-infrared (NIR-II) fluorescence imaging-guided photo-immunotherapy. Firstly, a NIR-Ⅱ fluorophore MRP bearing donor-acceptor-donor (D-A-D) backbone was synthesized.

View Article and Find Full Text PDF

The production of vaccines in plant cells, termed plant-made pharmaceuticals or molecular farming, is a promising technology for scalable production. Compared to mammalian cell lines, like Chinese Hamster Ovary (CHO) or bacterial cells, plants can be grown with less cost on a large scale to make vaccines antigens and therapeutics affordable and accessible worldwide. An innovative application of this alternative system is the production of vaccines in edible tissues that can be consumed orally to deliver protein antigen without any further processing.

View Article and Find Full Text PDF

Immunotherapy shows promising therapeutic potential for long-term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular-acidity-activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor immune microenvironment (TIME) hinders effective antitumor responses by limiting the accumulation of T cells around tumors, which presents challenges for cancer treatments.
  • Nanomedicine-based strategies are being studied to enhance antitumor immunity, but many currently struggle due to a lack of suitable therapeutic targets within the complex TIME landscape.
  • This review highlights various effective delivery methods and normalization techniques using nano/biomaterials that aim to promote T cell activity and improve the efficacy of cancer immunotherapy, focusing on both preclinical and clinical advancements.
View Article and Find Full Text PDF

The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT-driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells.

View Article and Find Full Text PDF

Immunotherapy aiming to harness the exquisite power of the immune system has emerged as a crucial part of clinical cancer management. However, only a subset of cancer patients responds to current immunotherapy because of low immunogenicity of the tumor cells and immunosuppressive tumor microenvironment. Herein, host-guest prodrug nanovectors are reported for active tumor targeting and combating immune tolerance in tumors.

View Article and Find Full Text PDF

Prodrug nanoparticles that codeliver the immune modulators to the tumor site are highly recommendable for cancer immunotherapy yet remain challenging. However, effective stimuli-responsive strategies that exploit the endogenous hallmarks of the tumor have paved the way for cancer immunotherapy. For the first time, the development of the Boolean logic prodrug nanoparticles (BLPNs) for tumor-targeted codelivery of immune modulators (e.

View Article and Find Full Text PDF

The importance of the immune system in cancer therapy has been reaffirmed by the success of the immune checkpoint blockade. The complex tumor microenvironment and its interaction with the immune system, however, remain mysteries. Molecular imaging may shed light on fundamental aspects of the immune response to elucidate the mechanism of cancer immunotherapy.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) capable of eliciting a robust antitumor immune response has been considered an attractive therapeutic approach. However, adaptive immune resistance in PDT underlines the need to develop alternative strategies. The exquisite power of checkpoint blockade can be harnessed to reinvigorate antitumor immune response.

View Article and Find Full Text PDF

Immunotherapy is rapidly maturing towards extensive clinical use. However, it does not work well in large patient populations because of an immunosuppressed microenvironment and limited reinvigoration of antitumor immunity. The tumor microenvironment is a complex milieu in which the principles of physiology and anatomy are defied and which is considered an immune-privileged site promoting T cell exhaustion.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers synthesized a carbon nanotubes-iron oxide nanocomposite using lecithin-stabilized superparamagnetic iron oxide nanoparticles through a simple hydrothermal method.
  • * Electrochemical tests, particularly cyclic voltammetry, demonstrated that the SPIONs-CNT nanocomposite has high sensitivity and selectivity for the anti-TB drug Rifampicin, with a limit of detection of 1.178 M.
View Article and Find Full Text PDF

Chemoimmunotherapy by systemic administration of individual regimens suffers from inconsistent pharmacokinetics profiles, low tumor specificity, and severe side effects. Despite promising nanoparticle-based codelivery approaches in therapeutics, the pathophysiological barriers of solid tumors are a hurdle for tumor accumulation and deep penetration of the drug-loaded nanoparticles. A light-inducible nanocargo (LINC) for immunotherapy is reported.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide.

View Article and Find Full Text PDF

The clinical performance of conventional cancer therapy approaches (surgery, radiotherapy, and chemotherapy) has been challenged by tumor metastasis and recurrence that is mainly responsible for cancer-caused mortalities. The cancer immunotherapy is being emerged nowadays as a promising therapeutic modality in order to achieve a highly efficient therapeutic performance while circumventing tumor metastasis and relapse. Liposomal nanoparticles (NPs) may serve as an ideal platform for systemic delivery of the immune modulators.

View Article and Find Full Text PDF
Article Synopsis
  • * A microwave-assisted method was developed to synthesize SeNPs, allowing for control over their size and other physical properties.
  • * The antimicrobial effectiveness of SeNPs was tested using electrochemical techniques, showing that these nanoparticles can be used to monitor the health of bacterial cell membranes after treatment.
View Article and Find Full Text PDF

Recent decades have witnessed the revolutionary development of cancer immunotherapies, which boost cancer-specific immune responses for long-term tumor regression. However, immunotherapy still has limitations, including off-target side effects, long processing times and limited patient responses. These disadvantages of current immunotherapy are being addressed by improving our understanding of the immune system, as well as by establishing combinational approaches.

View Article and Find Full Text PDF

The development of a simplified theranostic system with high-efficiency for multifunctional imaging-guided photodynamic therapy/photothermal therapy (PDT/PTT) is a great challenge. Therefore, a versatile fabrication strategy was introduced to design new FeO-black TiO nanocomposites (Fe-Ti NCs). The Fe-Ti NCs exhibit an intense broad light absorption, high photothermal conversion efficiency, inherited phototherapy, and favorable magnetic resonance imaging (MRI) properties.

View Article and Find Full Text PDF

AuroShell nanoparticles (sealed gold nanoshell on silica) are the only inorganic materials that are approved for clinical trial for photothermal ablation of solid tumors. Based on that, porous gold nanoshell structures are thus critical for cancer multiple theranostics in the future owing to their inherent cargo-loading ability. Nevertheless, adjusting the diverse experimental parameters of the reported procedures to obtain porous gold nanoshell structures is challenging.

View Article and Find Full Text PDF