Anal Cell Pathol (Amst)
February 2015
Background: Chromosomal aneuploidy has been identified as a prognostic factor in the majority of sporadic carcinomas. However, it is not known how chromosomal aneuploidy affects chromosome-specific protein expression in particular, and the cellular proteome equilibrium in general.
Objective: The aim was to detect chromosomal aneuploidy-associated expression changes in cell clones carrying trisomies found in colorectal cancer.
Current genetic and epigenetic theories of cancer-specific drug resistance do not adequately explain: (i) the karyotypic changes that coincide with resistance, (ii) the high rates at which cancer cells acquire and enhance resistance compared to the rates of conventional mutation, (iii) the wide ranges of resistance such as multidrug resistance, (iv) the frequent occurrence of intrinsic drug resistance. We have recently proposed, that specific karyotypic alterations are sufficient for drug resistance via new transcriptomes of cooperative genes, independent of gene mutation. This mechanism generates new phenotypes just like trisomy 21 generates Down syndrome.
View Article and Find Full Text PDFBackground: Chromosomal aneuploidy is a defining feature of carcinomas. For instance, in colon cancer, an additional copy of Chromosome 7 is not only observed in early pre-malignant polyps, but is faithfully maintained throughout progression to metastasis. These copy number changes show a positive correlation with average transcript levels of resident genes.
View Article and Find Full Text PDFTo identify sequential alterations of the genome, transcriptome, and proteome during colorectal cancer progression, we have analyzed tissue samples from 36 patients, including the complete mucosa-adenoma-carcinoma sequence from 8 patients. Comparative genomic hybridization (CGH) revealed patterns of stage specific, recurrent genomic imbalances. Gene expression analysis on 9K cDNA arrays identified 58 genes differentially expressed between normal mucosa and adenoma, 116 genes between adenoma and carcinoma, and 158 genes between primary carcinoma and liver metastasis (P < 0.
View Article and Find Full Text PDFChromosomal aneuploidies are observed in essentially all sporadic carcinomas. These aneuploidies result in tumor-specific patterns of genomic imbalances that are acquired early during tumorigenesis, continuously selected for and faithfully maintained in cancer cells. Although the paradigm of translocation induced oncogene activation in hematologic malignancies is firmly established, it is not known how genomic imbalances affect chromosome-specific gene expression patterns in particular and how chromosomal aneuploidy dysregulates the genetic equilibrium of cells in general.
View Article and Find Full Text PDFMany image analysis systems are available for processing the images produced by laser scanning of DNA microarrays. The image processing system takes pixel-level intensity data and converts it to a set of gene-level expression or copy number summaries that will be used in further analyses. Image analysis systems currently in use differ with regard to the specific algorithms they implement, ease of use, and cost.
View Article and Find Full Text PDFThe azoxymethane (AOM)-induced mouse colon tumor model recapitulates many of the histopathological features associated with the multistage progression of human sporadic colorectal cancers (CRCs). To better define the genetic events associated with tumorigenesis in this murine model, we analysed tumors from A/J mice for chromosomal (CIN) and microsatellite (MSI) instabilities, two fundamental pathways of genomic instability that play a critical role in the pathogenesis of human CRCs. Male A/J mice, 6-week old, were injected with either AOM (n=5) (10 mg/kg b.
View Article and Find Full Text PDFPatients with ulcerative colitis have a significantly increased lifetime risk for the development of colorectal carcinomas. While genetic and genomic changes during carcinogenesis have been thoroughly studied in sporadic colorectal cancers, less is known about ulcerative colitis-associated colorectal carcinomas. The aim of this study was to extend the identification of specific genomic imbalances to ulcerative colitis-associated colorectal carcinomas and to establish a comprehensive map of DNA gains and losses by investigating 23 tumor specimens from 23 patients.
View Article and Find Full Text PDFOncogene activation by gene amplification is a major pathogenetic mechanism in human cancer. Using comparative genomic hybridization, we determined that metastatic human colon cancers commonly acquire numerous extra copies of chromosome arms 7p, 8q, 13q, and 20q. We then examined the consequence of these amplifications on gene expression using DNA microarrays.
View Article and Find Full Text PDF