The single-stranded DNA genome of adeno-associated viruses (AAV) undergoes second-strand synthesis and transcription in the host cell nucleus. While wild-type AAV genomes are naturally silenced upon integration into the host genome, recombinant AAV (rAAV) genomes typically provide robust expression of transgenes persisting as extrachromosomal DNA or episomes. Episomal DNA associating with host histones is subject to epigenetic modifications, although the mechanisms underlying such are not well understood.
View Article and Find Full Text PDFChronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes.
View Article and Find Full Text PDFInnate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs.
View Article and Find Full Text PDFInfluenza continues to pose a threat to public health by causing illness and mortality in humans. Discovering host factors that regulate influenza virus propagation is vital for the development of novel drugs. We have previously reported that sphingosine kinase (SphK) 1 promotes influenza A virus (IAV) replication in vitro.
View Article and Find Full Text PDFAlthough influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) lyase (SPL) is an intracellular enzyme that mediates the irreversible degradation of the bioactive lipid S1P. We have previously reported that overexpressed SPL displays anti-influenza viral activity; however, the underlying mechanism is incompletely understood. In this study, we demonstrate that SPL functions as a positive regulator of IKKε to propel type I IFN-mediated innate immune responses against viral infection.
View Article and Find Full Text PDFUnlabelled: Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway.
View Article and Find Full Text PDFThe ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection.
View Article and Find Full Text PDFViruses attempt to create a distinctive cellular environment to favor viral replication and spread. Recent studies uncovered new functions of the sphingolipid signaling/metabolism during pathogenic virus infections. While sphingolipids such as sphingomyelin and ceramide were reported to influence the entry step of several viruses, sphingolipid-metabolizing enzymes could directly alter viral replication processes.
View Article and Find Full Text PDFMeasles virus (MV) manipulates host factors to facilitate virus replication. Sphingosine kinase (SK) is an enzyme catalyzing the formation of sphingosine 1-phosphate and modulates multiple cellular processes including the host defense system. Here, we determined the role of SK1 in MV replication.
View Article and Find Full Text PDFInfluenza continues to pose a threat to humans by causing significant morbidity and mortality. Thus, it is imperative to investigate mechanisms by which influenza virus manipulates the function of host factors and cellular signal pathways. In this study, we demonstrate that influenza virus increases the expression and activation of sphingosine kinase (SK) 1, which in turn regulates diverse cellular signaling pathways.
View Article and Find Full Text PDFSphingosine analogues display immunosuppressive activities and thus have therapeutic potential in the treatment of autoimmune diseases. In this study, we investigated the effects of the sphingosine analogue AAL-R (FTY720 derivative) on dendritic cell (DC) response upon TLR stimulation. Unlike its known immunosuppressive activity, AAL-R increased TLR7-mediated DC responses by elevating the levels of MHC class I and costimulatory molecules and type I IFN expression and by enhancing the capacity of DCs to induce CD8(+) T cell proliferation.
View Article and Find Full Text PDF