Publications by authors named "Madhusudhana Rao Kotte"

Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm).

View Article and Find Full Text PDF

Advances in industrial ecology, desalination, and resource recovery have established that industrial wastewater, seawater, and brines are important and largely untapped sources of critical metals and elements. A Grand Challenge in metal recovery from industrial wastewater is to design and synthesize high capacity, recyclable and robust chelating ligands with tunable metal ion selectivity that can be efficiently processed into low-energy separation materials and modules. In our efforts to develop high capacity chelating membranes for metal recovery from impaired water, we report a one-pot method for the preparation of a new family of mixed matrix polyvinylidene fluoride (PVDF) membranes with in situ synthesized poly(amidoamine) [PAMAM] particles.

View Article and Find Full Text PDF

The availability and sustainable supply of technology metals and valuable elements is critical to the global economy. There is a growing realization that the development and deployment of the clean energy technologies and sustainable products and manufacturing industries of the 21st century will require large amounts of critical metals and valuable elements including rare-earth elements (REEs), platinum group metals (PGMs), lithium, copper, cobalt, silver, and gold. Advances in industrial ecology, water purification, and resource recovery have established that seawater is an important and largely untapped source of technology metals and valuable elements.

View Article and Find Full Text PDF

In this article, we report the preparation, characterization and microalgae recovery potential of a new family of fouling-resistant polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes embedded with hydrophilic and PEGylated polymeric particles. To optimize membrane performance for microalgae harvesting, we investigate the effects of three hydrophilic additives (Pluronic F-127, polyvinylpyrrolidone and polyethylene glycol) on the morphology, pore size, bulk composition, surface composition, wettability and surface charge, flux and fouling resistance of the mixed matrix PVDF membranes with in situ PEGylated polyethyleneimine (PEI) particles. Our filtration experiments show that a mixed matrix PVDF membrane with PEGylated PEI particles and Pluronic F-127 additive (PNSM-1) has an algae retention of 100% with a permeate flux of 96 L/m(2)/hr that is larger (by ∼50%) than that of a commercial and hydrophilic PVDF UF membrane with a molecular weight cut-off of 30 kDa using a suspension of Chlorella sp.

View Article and Find Full Text PDF