Designing smart autonomous healing soft materials is crucial to attaining cost-efficiency and optimal performance in organic semiconductors. In this context, we design an unsymmetrical thiophene-fused phenazine (TFP)-based discotic liquid crystal (DLC) with the goal of creating an active organic semiconductor that encompasses favorable attributes, such as polarizability, mobility, and processability. Aligned with our objective, we successfully synthesized two unsymmetrical TFP core-based DLCs by linking alkyl chains of variable lengths at the periphery through a coupling reaction.
View Article and Find Full Text PDFDiscotic liquid crystals (DLCs) are widely acknowledged as a class of organic semiconductors that can harmonize charge carrier mobility and device processability through supramolecular self-assembly. In spite of circumventing such a major challenge in fabricating low-cost charge transport layers, DLC-based hole transport layers (HTLs) have remained elusive in modern organo-electronics. In this work, a minimalistic design strategy is envisioned to effectuate a cyanovinylene-integrated pyrene-based discotic liquid crystal (PY-DLC) with a room-temperature columnar hexagonal mesophase and narrow bandgap for efficient semiconducting behavior.
View Article and Find Full Text PDFHydrogen (H)-bonding is crucial in constructing superstructures in chemical (such as chiral discotic liquid crystals (DLCs)) as well as in biological systems due to its specific and directional nature. In this context, we achieved the successful synthesis of two branches of heptazine-based H-bonded complexes using distinct strategies. Hpz*-Es-C , we incorporated chiral alkyl tails (Hpz-chiral) onto the central C symmetric heptazine core, connected to achiral benzoic acid derivatives (Es-C acid) through H-bonding.
View Article and Find Full Text PDFFormation of a thermally stiffening microemulsion-based gel showing a nanoconfinement effect of carbohydrates in terms of microviscosity and hydrodynamic diameter of the reverse micelle (specifically with sucrose) is reported. The advantage of this gel as an efficient batch bioreactor for entrapped enzymes (horseradish peroxidase and thermophilic α-glucosidase) was shown, and illustrated its potential biocatalytic application at high temperatures.
View Article and Find Full Text PDF