Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs.
View Article and Find Full Text PDFA new set of donor-acceptor (D-A) conjugates capable of undergoing ultrafast electron transfer were synthesized using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-substituted phenothiazine, SM1-SM3, by a Pd-catalyzed Sonogashira cross-coupling reaction and a [2+2] cycloaddition-electrocyclic ring-opening reaction. The incorporation of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (abbreviated as DCNQ=dicyanodiquinodimethane) in BODIPY-substituted phenothiazine resulted in significant perturbation of the optical and electronic properties. The absorption spectrum of both SM2 and SM3 showed red shifted absorption as compared to SM1.
View Article and Find Full Text PDFA set of 1,8-naphthalimide (NPI)-substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads 1 a-1 c were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI 1 with the meso-, β-, and α-halogenated BODIPYs a, b, and c, respectively. The BODIPY 1 c exhibits redshifted absorption, which suggests better electronic communication with substitution at the α-position of BODIPY compared with at the meso and β positions, which was further supported by time-dependent DFT calculations. The optical band gap follows the order 1 a>1 b>1 c.
View Article and Find Full Text PDFA series of unsymmetrical (D-A-D , D -π-D-A-D , and D -A -D-A -D ; A=acceptor, D=donor) and symmetrical (D -A-D-A-D ) phenothiazines (4 b, 4 c, 4 c', 5 b, 5 c, 5 d, 5 d', 5 e, 5 e', 5 f, and 5 f') were designed and synthesized by a [2+2] cycloaddition-electrocyclic ring-opening reaction of ferrocenyl-substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge-transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b, 4 c, 4 c', 5 b, 5 c, 5 d, 5 d', 5 e, 5 e', 5 f and 5 f' show redshifted absorption in the λ=400 to 900 nm region, as a result of a low HOMO-LUMO gap, which is supported by TD-DFT calculations.
View Article and Find Full Text PDF