Inhibitor of growth family member 3 (ING3), a tumor suppressor, plays crucial roles in cell cycle regulation, apoptosis and transcription. Previous studies suggest important roles of nuclear ING3, however, the nuclear localization sequence (NLS) of ING3 is not defined and its biological functions remain to be elucidated. In this study, various ING3 mutants were generated to identify its NLS.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
Metastatic melanoma is a dreadful type of skin cancer arising due to uncontrolled proliferation of melanocytes. It has very poor prognosis, low 5-year survival rates and until recently there were only handful of treatment options for metastatic melanoma patients. The drugs that were approved for the treatment had low response rates and were associated with severe adverse events.
View Article and Find Full Text PDFThis commentary wishes to highlight the 2018 Nobel Prize in Medicine awarded to two cancer immunotherapy scientists, Prof James Allison and Prof Tasuku Honjo, for their discovery on unleashing the body's immune system to attack cancer. Their studies have led to the development of an entire class of drugs that hopefully will bring lasting remissions to many patients who had run out of options.
View Article and Find Full Text PDFUV radiation induced genomic instability is one of the leading causes for melanoma. Phosphorylation of Ataxia Telangiectasia Mutated (ATM) is one of the initial events that follow DNA damage. Phospho-ATM (p-ATM) plays a key role in the activation of DNA repair and several oncogenic pathways as well as in the maintenance of genomic integrity.
View Article and Find Full Text PDFPigment Cell Melanoma Res
November 2015
The tetraspan protein KAI1 (CD82) has been previously shown to have important roles in cell migration, invasion, and melanoma prognosis. In this study, we investigated the role of KAI1 regarding melanoma angiogenesis. KAI1 overexpression strongly suppressed the growth of the human umbilical vein endothelial cells and their tubular structure formation in vitro.
View Article and Find Full Text PDFBackground/aims: Dendritic cells (DCs), antigen-presenting cells critically important for primary immune response and establishment of immunological memory, are activated by bacterial lipopolysaccharides (LPS) resulting in stimulation of Na(+)/H(+) exchanger, ROS formation and migration. The effects are dependent on phosphoinositide 3 (PI3) kinase and paralleled by Akt phosphorylation. The present study explored the contribution of the Akt isoform Akt1.
View Article and Find Full Text PDFMetastatic melanoma is notorious for its immune evasion and resistance to conventional chemotherapy. The recent success of ipilimumab, a human monoclonal antibody against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), in increasing the median survival time and stabilizing the disease progression renewed, hopes in treatment for melanoma. Currently, ipilimumab and high-dose interleukin-2 (IL-2; Aldesleukin) are approved as monotherapies for the treatment of patients with unresectable advanced melanoma, and pegylated interferon-α2b (p-IFN-α2b) is approved as an adjuvant for the treatment of patients with surgically resected high-risk melanoma.
View Article and Find Full Text PDFBackground: To date only a handful of drugs are available for the treatment of melanoma. Among them vemurafenib, a BrafV600E specific inhibitor, showed promising results in terms of response rate and increase in median survival time. However, its effectiveness is limited by development of resistance and the search for additional drugs for melanoma treatment is ongoing.
View Article and Find Full Text PDFUltraviolet (UV) radiation-induced DNA damage and genomic instability is one of the leading causes for melanoma. X-ray repair cross-complementary protein 1, XRCC1, plays a critically important role in base excision repair pathway. This study was therefore performed to analyze the correlation between XRCC1 expression, melanoma progression, and patient survival.
View Article and Find Full Text PDFBackground/aims: Glucocorticoids enhance gastric acid secretion and inhibit gastric cyclooxygenase, thus downregulating formation of PGE2, an inhibitor of gastric acid secretion. In erythrocytes, PGE2 formation is inhibited by annexin 7. The present study thus explored whether annexin 7 participates in the regulation of gastric acid secretion.
View Article and Find Full Text PDFInhibitor of growth (ING) family of proteins are known to coordinate with histone acetyltransferases and regulate the key events of cell cycle and DNA repair. Previous work from our lab showed that Ing1b regulated the nucleotide excision repair by facilitating histone acetylation and subsequent chromatin relaxation. Further, it was also shown that Ing1b protected the cells from genomic instability induced cell death by promoting ubiquitination of proliferating cell nuclear antigen (PCNA).
View Article and Find Full Text PDFBackground: Genomic instability due to UV radiation is one of the leading causes for melanoma. Histone acetyltransferase p300 plays an indispensible role in DNA repair and maintenance of genomic integrity. The present study was performed to analyze the correlation between p300 expression, melanoma progression and patient survival.
View Article and Find Full Text PDFThe function of dendritic cells (DCs) is modified by glycogen synthase kinase GSK3 and GSK3 inhibitors have been shown to protect against inflammatory disease. Regulators of GSK3 include the phosphoinositide 3 kinase (PI3K) pathway leading to activation of protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit GSK3. The present study explored, whether PKB/SGK-dependent inhibition of GSK3 contributes to the regulation of cytosolic Ca(2+) concentration following stimulation with bacterial lipopolysaccharides (LPS).
View Article and Find Full Text PDFBackground: Little is known about the effect of salt content of ingested fluid on intestinal transport processes. Osmosensitive genes include the serum- and glucocorticoid-inducible kinase SGK1, which is up-regulated by hyperosmolarity and cell shrinkage. SGK1 is in turn a powerful stimulator of the intestinal Na(+)/H(+) exchanger NHE3.
View Article and Find Full Text PDFBackground/aims: Dendritic cells (DCs) are antigen-presenting cells linking innate and adaptive immunity. DC maturation and migration are governed by alterations of cytosolic Ca(2+) concentrations ([Ca(2+)](i)). Ca(2+) entry is in part accomplished by store-operated Ca(2+) (SOC) channels consisting of the membrane pore-forming subunit Orai and the ER Ca(2+) sensing subunit STIM.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2012
The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity.
View Article and Find Full Text PDFRapamycin, a widely used immunosuppressive drug, has been shown to interfere with the function of dendritic cells (DCs), antigen-presenting cells contributing to the initiation of primary immune responses and the establishment of immunological memory. DC function is governed by the Na(+)/H(+) exchanger (NHE), which is activated by bacterial lipopolysaccharides (LPS) and is required for LPS-induced cell swelling, reactive oxygen species (ROS) production and TNF-α release. The present study explored, whether rapamycin influences NHE activity and/or ROS formation in DCs.
View Article and Find Full Text PDFCell Physiol Biochem
August 2012
Azathioprine is a powerful immunosuppressive drug, which is partially effective by interfering with the maturation and function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs are stimulated by bacterial lipopolysaccharides (LPS), which trigger the formation of reactive oxygen species (ROS), paralleled by activation of the Na(+)/H(+) exchanger. The carrier is involved in the regulation of cytosolic pH, cell volume and migration.
View Article and Find Full Text PDFKidney Blood Press Res
October 2012
Background/aims: Gum arabic (GA) is a Ca(2+)-, Mg(2+)- and K(+)-rich dietary fiber used for the treatment of patients with chronic kidney disease in Middle Eastern countries. In healthy mice, GA treatment increases creatinine clearance, renal ADH excretion, as well as intestinal and renal excretion of Mg(2+) and Ca(2+). GA decreases plasma Pi concentration, urinary Pi and Na(+) excretion.
View Article and Find Full Text PDFThe anti-inflammatory Nigella sativa component thymoquinone compromises the function of dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. DC function is regulated by the Na(+)/H(+) exchanger (NHE), which is stimulated by lipopolysaccharides (LPS) and required for LPS-induced cell swelling, reactive oxygen species (ROS) production, TNF-α release and migration. Here we explored, whether thymoquinone influences NHE activity in DCs.
View Article and Find Full Text PDFDendritic cells (DCs) are antigen-presenting cells decisive in primary immune responses and establishment of immunological memory. They are activated by bacterial lipopolysaccharides (LPS), which lead to activation of Na(+)/H(+) exchanger activity, cell swelling, reactive oxygen species (ROS) formation, and migration. The effects require functional phosphoinositide 3 kinase and are paralleled by Akt phosphorylation.
View Article and Find Full Text PDFCell Physiol Biochem
December 2011
Glucocorticoids regulate the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. Glucocorticoids influence the function of other cell types by modulating the activity of the Na(+)/H(+)exchanger (NHE), a carrier involved in the regulation of cytosolic pH and cell volume. The present study explored whether dexamethasone influences Na(+)/H(+) exchanger activity in DCs.
View Article and Find Full Text PDFCell Physiol Biochem
October 2011
The Ca(2+) activated K(+) channel K(ca)3.1 is expressed in a variety of tissues. In the gastric gland it is expressed in the basolateral cell membrane.
View Article and Find Full Text PDFInsulin and IGF1-dependent signaling activates protein kinase B and serum and glucocorticoid inducible kinase (PKB/SGK), which together phosphorylate and inactivate glycogen synthase kinase GSK3. Because insulin and IGF1 increase renal tubular calcium and phosphorus reabsorption, we examined GSK3 regulation of phosphate transporter activity and determined whether PKB/SGK inactivates GSK3 to enhance renal phosphate and calcium transport. Overexpression of GSK3 and the phosphate transporter NaPi-IIa in Xenopus oocytes decreased electrogenic phosphate transport compared with NaPi-IIa-expressing oocytes.
View Article and Find Full Text PDF