This protocol describes the differentiation of human neural progenitor cells (hNPCs) in a microfluidic device containing a thin 3D matrix with two separate chambers, enabling a cleaner separation between axons and soma/bulk neurons. We have used this technique to study how mitochondria-associated ER membranes (MAMs) regulate the generation of somal and axonal amyloid β (Aβ) in FAD hNPCs, a cellular model of Alzheimer's disease. This protocol also details the quantification of Aβ molecules and isolation of pure axons via axotomy.
View Article and Find Full Text PDFAxonal generation of Alzheimer's disease (AD)-associated amyloid-β (Aβ) plays a key role in AD neuropathology, but the cellular mechanisms involved in its release have remained elusive. We previously reported that palmitoylated APP (palAPP) partitions to lipid rafts where it serves as a preferred substrate for β-secretase. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are cholesterol-rich lipid rafts that are upregulated in AD.
View Article and Find Full Text PDF