We demonstrated binding interactions of polymyxin B (PMB), PMB formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS) and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). The 1:2 PMB formulation (78.5-135.
View Article and Find Full Text PDFIn this study, we have developed a method to assess adenosine 5'-triphosphate by adsorptive extraction using surface adenosine 5'-triphosphate-imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5'-triphosphate as a template, functional monomers (methacrylic acid, N-isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non-imprinted polymers were measured using high-performance liquid chromatography with UV detection with a detection limit of 1.
View Article and Find Full Text PDFThis work presents the outcomes of a comparative study of molecular interactions of polymyxin B (PMB) and F12 and F13 formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS), respectively, and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). Several spectroscopic and interfacial studies were performed to obtain LPS-peptide interactions at a molecular level. The fluorescence titrimetry method revealed that the F12 formulation (325 nM) exhibited a lower number of binding sites to the LPS compared to CPMB and F13 as well as PMB alone (537 nM).
View Article and Find Full Text PDFSodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties.
View Article and Find Full Text PDF