The mechanisms mediating the restricted growth in intrauterine growth restriction (IUGR) remain to be fully established. Mechanistic target of rapamycin (mTOR) signaling functions as a placental nutrient sensor, indirectly influencing fetal growth by regulating placental function. Increased secretion and the phosphorylation of fetal liver IGFBP-1 are known to markedly decrease the bioavailability of IGF-1, a major fetal growth factor.
View Article and Find Full Text PDFIncreased phosphorylation of decidual insulin-like growth factor-binding protein-1 (IGFBP-1) can contribute to intrauterine growth restriction (IUGR) by decreasing the bioavailability of insulin-like growth factor-1 (IGF-1). However, the molecular mechanisms regulating IGFBP-1 phosphorylation at the maternal-fetal interface are poorly understood. Protein kinase A (PKA) is required for normal decidualization.
View Article and Find Full Text PDFMechanistic Target of Rapamycin Complex 2 (mTORC2) regulates placental amino acid and folate transport. However, the role of mTORC2 in modulating other placental functions is largely unexplored. We used a gene array following the silencing of rictor to identify genes regulated by mTORC2 in primary human trophoblast (PHT) cells.
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) bioavailability in pregnancy is governed by IGF binding protein (IGFBP-1) and its phosphorylation, which enhances the affinity of IGFBP-1 for the growth factor. The decidua is the predominant source of maternal IGFBP-1; however, the mechanisms regulating decidual IGFBP-1 secretion/phosphorylation are poorly understood. Using decidualized primary human endometrial stromal cells (HESCs) from first-trimester placenta, we tested the hypothesis that mTORC1 signaling mechanistically links hypoxia to decidual IGFBP-1 secretion/phosphorylation.
View Article and Find Full Text PDFHypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.
View Article and Find Full Text PDFFetal growth restriction (FGR) is associated with decreased nutrient availability and reduced insulin-line growth factor (IGF)-I bioavailability via increased IGF binding protein (IGFBP)-1 phosphorylation. While protein kinase C (PKC) is implicated in IGFBP-1 hyperphosphorylation in nutrient deprivation, the mechanisms remain unclear. We hypothesised that the interaction of PKCα with protein kinase CK2β and activation of PKCα under leucine deprivation (L0) mediate fetal hepatic IGFBP-1 hyperphosphorylation.
View Article and Find Full Text PDFMechanistic Target of Rapamycin Complex 1 (mTORC1) serves as positive regulator of placental nutrient transport and mitochondrial respiration. The role of mTORC1 signaling in modulating other placental functions is largely unexplored. We used gene array following silencing of raptor to identify genes regulated by mTORC1 in primary human trophoblast (PHT) cells.
View Article and Find Full Text PDFIn cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185).
View Article and Find Full Text PDFDecidual mechanistic target of rapamycin (mTOR) is inhibited, amino acid response (AAR) and protein kinase CK2 are activated, and IGF (insulin-like growth factor) binding protein (IGFBP)-1 is hyperphosphorylated in human intrauterine growth restriction (IUGR). Using decidualized human immortalized endometrial stromal cells (HIESC), we hypothesized that hypoxia and leucine deprivation causing inhibition of decidual IGF-1 signaling is mediated by mTOR, AAR, CK2 and IGFBP-1 phosphorylation. Mass spectrometry demonstrated that hypoxia (1% O) or rapamycin increased IGFBP-1 phosphorylation singly at Ser101/119/169 (confirmed using immunoblotting) and dually at pSer169 + 174.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) increases the risk for perinatal complications and metabolic and cardiovascular disease later in life. The syncytiotrophoblast (ST) is the transporting epithelium of the human placenta, and decreased expression of amino acid transporter isoforms in the ST plasma membranes is believed to contribute to IUGR. Placental mechanistic target of rapamycin Complex 2 (mTORC2) signaling is inhibited in IUGR and regulates the trafficking of key amino acid transporter (AAT) isoforms to the ST plasma membrane; however, the molecular mechanisms are unknown.
View Article and Find Full Text PDFTrophoblast oxidative phosphorylation provides energy for active transport and protein synthesis, which are critical placental functions influencing fetal growth and long-term health. The molecular mechanisms regulating trophoblast mitochondrial oxidative phosphorylation are largely unknown. We hypothesized that mechanistic Target of Rapamycin Complex 1 (mTORC1) is a positive regulator of key genes encoding Electron Transport Chain (ETC) proteins and stimulates oxidative phosphorylation in trophoblast and that ETC protein expression is down-regulated in placentas of infants with intrauterine growth restriction (IUGR).
View Article and Find Full Text PDFMechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy, and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to support fetal growth.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
February 2019
Context: The mechanisms underpinning intrauterine growth restriction (IUGR), as a result of placental insufficiency, remain poorly understood, no specific treatment is available, and clinically useful biomarkers for early detection are lacking.
Objective: We hypothesized that human IUGR is associated with inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling, increased protein kinase casein kinase-2 (CK2) activity, and increased insulin-like growth factor-binding protein 1 (IGFBP-1) expression and phosphorylation in decidua and that maternal plasma IGFBP-1 hyperphosphorylation in the first trimester predicts later development of IUGR.
Design, Setting, And Participants: Decidua [n = 16 appropriate-for-gestational age (AGA); n = 16 IUGR] and maternal plasma (n = 13 AGA; n = 13 IUGR) were collected at delivery from two different cohorts.
Folate deficiency in pregnancy is associated with neural tube defects, restricted fetal growth and fetal programming of diseases later in life. Fetal folate availability is dependent on maternal folate levels and placental folate transport capacity, mediated by two key transporters, Folate Receptor-α and Reduced Folate Carrier (RFC). We tested the hypothesis that intrauterine growth restriction (IUGR) is associated with decreased folate transporter expression and activity in isolated syncytiotrophoblast microvillous plasma membranes (MVM).
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) is often caused by placental insufficiency, which is believed to be associated with decreased delivery of oxygen and nutrients to the placental barrier. We recently reported that hypoxia and/or leucine deprivation triggered hyperphosphorylation of insulin-like growth factor binding protein-1 (IGFBP-1) in decidualized human immortalized endometrial stromal cells (HIESCs), resulting in decreased insulin-like growth factor-1 (IGF-1) bioactivity. To test the hypothesis that human IUGR is associated with increased decidual IGFBP-1 phosphorylation at discrete sites, we used IUGR and gestational age matched appropriate for gestational age (AGA) placentas ( n=5 each).
View Article and Find Full Text PDFFatty acids (FA) are critical for fetal brain development and are transferred across the placenta by membrane-bound FA transport proteins (FATP), translocases (FAT/CD36), and cytosolic binding proteins (FABP). The cytosolic protein perilipin-2 aids in neutral lipid storage within lipid droplets. Decreased placental nutrient transport is believed to contribute to intrauterine growth restriction (IUGR); however, IUGR placental lipid transport and metabolism are poorly understood.
View Article and Find Full Text PDFInsulin-like growth factor binding protein (IGFBP)-1 influences fetal growth by modifying insulin-like growth factor-I (IGF-I) bioavailability. IGFBP-1 phosphorylation, which markedly increases its affinity for IGF-I, is regulated by mechanistic target of rapamycin (mTOR) and casein kinase (CSNK)-2. However, the underlying molecular mechanisms remain unknown.
View Article and Find Full Text PDFPhosphorylation of decidual IGFBP-1 enhances binding of IGF-I, limiting the bioavailability of this growth factor which may contribute to reduced placental and fetal growth. The mechanisms regulating decidual IGFBP-1 phosphorylation are incompletely understood. Using decidualized human immortalized endometrial stromal cells we tested the hypothesis that low oxygen tension or reduced leucine availability, believed to be common in placental insufficiency, increase the phosphorylation of decidual IGFBP-1.
View Article and Find Full Text PDFIn intrauterine growth restriction (IUGR), a subset of pregnancies undergoes placental vascular dysregulation resulting in restricted blood flow and fetal hypoxemia. Altered transcription of hypoxic regulated plasminogen activator inhibitor 1 (PAI-1) has been associated with pregnancy complications and angiogenic regulation. Here we assessed circulating PAI-1 as an indicator of placental insufficiency.
View Article and Find Full Text PDFInsulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids.
View Article and Find Full Text PDFIn fetal growth restriction (FGR), fetal growth is limited by reduced nutrient and oxygen supply. Insulin-like growth factor I (IGF-I) is a key regulator of fetal growth and IGF binding protein -1(IGFBP-1) is the principal regulator of fetal IGF-I bioavailability. Phosphorylation enhances IGFBP-1's affinity for IGF-I.
View Article and Find Full Text PDFPlacental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM).
View Article and Find Full Text PDFMol Cell Endocrinol
September 2015
Insulin-like growth factor-1 (IGF-I) is the key regulator of fetal growth. IGF-I bioavailability is markedly diminished by IGF binding protein-1 (IGFBP-1) phosphorylation. Leucine deprivation strongly induces IGFBP-1 hyperphosphorylation, and plays an important role in fetal growth restriction (FGR).
View Article and Find Full Text PDFJ Cell Commun Signal
June 2015
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking.
View Article and Find Full Text PDFFetal growth restriction (FGR) increases the risk for perinatal complications and predisposes the infant to diabetes and cardiovascular disease later in life. No treatment for FGR is available, and the underlying pathophysiology remains poorly understood. Increased IGFBP-1 phosphorylation has been implicated as an important mechanism by which fetal growth is reduced.
View Article and Find Full Text PDF