Publications by authors named "Madhuchhanda Mitra"

Background: Dry Age-related macular degeneration (AMD), which affects the older population, can lead to blindness when left untreated. Preventing vision loss in elderly needs early identification. Dry-AMD diagnosis is still time-consuming and very subjective, depending on the ophthalmologist.

View Article and Find Full Text PDF

Background: Diabetic Retinopathy (DR) is a serious consequence of diabetes that can result to permanent vision loss for a person. Diabetes-related vision impairment can be significantly avoided with timely screening and treatment in its initial phase. The earliest and the most noticeable indications on the surface of the retina are micro-aneurysm and haemorrhage, which appear as dark patches.

View Article and Find Full Text PDF

This paper represents an unsupervised approach to detect the positions of S1, S2 heart sound events in a Phonocardiogram (PCG) recording. Insufficiency of correctly annotated heart sound database drives us to investigate unsupervised techniques. Gammatone filter bank features are used to characterize the spectral pattern of fundamental heart sound events from noise contaminated PCG data.

View Article and Find Full Text PDF

The alarming rate of mortality and disability due to Chronic Obstructive Pulmonary Disease (COPD) has become a serious health concern worldwide. The progressive nature of this disease makes it inevitable to detect this disease in its early stages, leads to a greater demand for developing non-obstructive and reliable technology for COPD detection. The use of highly patient-effort dependent, time-consuming, and expensive methods are some major inherent limitations of previous techniques.

View Article and Find Full Text PDF

This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique.

View Article and Find Full Text PDF

Analysis of volatile organic compounds (VOCs) emanating from human exhaled breath can provide deep insight into the status of various biochemical processes in the human body. VOCs can serve as potential biomarkers of physiological and pathophysiological conditions related to several diseases. Breath VOC analysis, a noninvasive and quick biomonitoring approach, also has potential for the early detection and progress monitoring of several diseases.

View Article and Find Full Text PDF

In this paper an Empirical Mode Decomposition (EMD) based ECG signal enhancement and QRS detection algorithm is proposed. Being a non-invasive measurement, ECG is prone to various high and low frequency noises causing baseline wander and power line interference, which act as a source of error in QRS and other feature extraction. EMD is a fully adaptive signal decomposition technique that generates Intrinsic Mode Functions (IMF) as decomposition output.

View Article and Find Full Text PDF