The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.
View Article and Find Full Text PDFSupramolecular architectures, which are formed through the combination of inorganic metal cations and organic ligands by self-assembly, are one of the techniques in modern chemical science. This kind of multi-nuclear system in various dimensionalities can be implemented in various applications such as sensing, storage/cargo, display and molecular switching. Iron(II) mediated spin-crossover (SCO) supramolecular architectures with Schiff bases have attracted the attention of many investigators due to their structural novelty as well as their potential application possibilities.
View Article and Find Full Text PDFThe -{Er} complex [ErCl()(OH)(HO)]Cl·HO ( = 9.4; H() = -vanillin) (1) was generated by an method. The isolated Er(iii) complex 1 was characterized by elemental analysis and molecular spectroscopy.
View Article and Find Full Text PDFThe spin-crossover (SCO) phenomenon is one of the most prominent examples of bi-stability in molecular chemistry, and the SCO complexes are proposed for nanotechnological applications such as memory units, sensors, and displays. Since the discovery of the SCO phenomenon in tris(N,N-dialkyldithiocarbamato)iron(iii) complexes, numerous investigations have been made to obtain bi-stable SCO complexes undergoing spin-state switching at or around room temperature (RT). Valiant efforts have also been made to elucidate the structure-property relationship in SCO complexes to understand the factors-such as ligand-field strength, molecular geometry, and intermolecular interactions-governing the SCO.
View Article and Find Full Text PDFPaper-based electrochemical sensors (PESs) have been evidenced as analytical strategies for employing simple, low-cost, portable and disposable sensing platforms that can be used in many application areas. Recently, PESs have gained extensive attention because of their advantages of advanced sensitivity and selectivity during detection provided by electrochemistry, compared with microfluidic paper-based analytical devices (μPADs) that still lack these advantages. Also, it can be expected that PESs can better meet current user demands, making them a stand-out analytical tool because of their capability for multiple analyte detection and their compatibility in a variety of application areas, like clinical diagnosis, environmental monitoring and food quality control.
View Article and Find Full Text PDF