Pancreatic ductal adenocarcinoma (PDAC) has a minimal (<15%) 5-year existence, in part due to resistance to chemoradiotherapy. Previous research reveals the impact of paricalcitol (P) and hydroxychloroquine (H) on altering the lysosomal fusion, decreasing stromal burden, and triggering PDAC to chemotherapies. This investigation aims to elucidate the molecular properties of the H and P combination and their potential in sensitizing PDAC to gemcitabine (G).
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) experiment reveals previously unseen molecular features. The number of sequencing procedures and computational data analysis approaches has been increasing rapidly in recent years. This chapter provides a general idea of the single-cell data analysis and visualization.
View Article and Find Full Text PDFPurpose: Placental growth factor (PlGF) and Angiopoietin (Ang)-1 are two proteins that are involved in the regulation of endothelial cell (EC) growth and vasculature formation. In the retina and endothelial cells, pericytes are the major source of both molecules. The purpose of this study is to examine the association of PlGF and Ang-1 with human EC/pericyte co-cultures and iPSC-derived vascular organoids.
View Article and Find Full Text PDFNon-invasive electric stimulation (ES) employing a low-intensity electric current presents a potential therapeutic modality that can be applied for treating retinal and brain neurodegenerative disorders. As neurons are known to respond directly to ES, the effects of ES on glia cells are poorly studied. A key question is if ES directly mediates microglial function or modulates their activity merely via neuron-glial signaling.
View Article and Find Full Text PDFOur previous studies found that the C-X-C motif chemokine receptor 5 (CXCR5) loss leads to retinal pigment epithelium (RPE) dysfunction and AMD pathogenesis. The current study aimed to characterize the G protein-coupled receptor (GPCR) structure of CXCR5 and analyze its interactions with AMD-related risk genes. The sequence alignments, homology model of CXCR5 and structural assessment analysis were performed.
View Article and Find Full Text PDFBackground: Retinal microglial cells (RMCs) play crucial roles in maintaining normal visual functions in a healthy eye. However, the underlying mechanisms of RMCs over-activation manifesting the alterations of sensome profile and inflammation state, which contribute to various retinal neurodegenerative diseases, remain elusive. Here, we aimed to identify the core set of sensome and pro-inflammatory genes and their regulators using transcriptome and data mining approaches.
View Article and Find Full Text PDFTo investigate the role of placental growth factor/vascular endothelial growth factor (PlGF-VEGF) heterodimers are involved in the blood-retinal barrier (BRB) breakdown and the associated mechanism, human retinal endothelial cells (HRECs) were treated with recombinant human (rh)PlGF-VEGF heterodimers and rhPlGF and studied in normal and high-glucose conditions. HREC barrier function was evaluated by the measurement of trans-endothelial electrical resistance (TEER). Adeno-Associated Virus Type 5 (AAV5) vectors overexpressed PlGF in the retina by intravitreal injection into the C57BL6 mouse eye.
View Article and Find Full Text PDFHomeostasis of the retinal pigment epithelium (RPE) is essential for the health and proper function of the retina. Regulation of RPE homeostasis is, however, largely unexplored, yet dysfunction of this process may lead to retinal degenerative diseases, including age-related macular degeneration (AMD). Here, we report that chemokine receptor CXCR5 regulates RPE homeostasis through PI3K/AKT signaling and by suppression of FOXO1 activation.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most common cancer diagnosed worldwide making it a serious global challenge. CRC progression results from dysregulated cytoplasmic transcription factors, including signal transducer and activator of transcription (STAT) proteins that are involved in JAK-STAT pathway. The STAT proteins contain a conserved SH2 domain that facilitates the initiation of STAT activation via binding to tyrosine motifs followed by STAT dimerization.
View Article and Find Full Text PDFThe CXCR5 (C-X-C motif chemokine receptor 5) is chemokine transmembrane receptor, acting via its ligand CXCL13 and plays a crucial role in controlling the trafficking of inflammatory cells into and from the sub-retinal space, which contributes to the pathogenesis of AMD. We have previously described the genetic ablation of CXCR5 deficiency causes RPE/choroid abnormalities and retinal degeneration (RD) in aged mice. Here we report the transcriptome data (RNA-Seq) of 24 months old CXCR5 knockout (KO) and age-matched C57BL/6 controls (WT).
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is the most common cause of irreversible blindness in the elderly population. In our previous studies, we found that deficiency of causes AMD-like pathological phenotypes in mice, characterized by abnormalities and dysfunction of the retinal pigment epithelium (RPE) cells. The abnormalities included abnormal cellular shape and impaired barrier function.
View Article and Find Full Text PDFBackground: The ways in which microglia activate and promote neovascularization (NV) are not fully understood. Recent in vivo evidence supports the theory that calcium is required for the transition of microglia from a surveillance state to an active one. The objectives of this study were to discover novel L-type voltage-gated channel (L-VGCC) blockers and investigate their application for the prevention of inflammation and angiogenesis.
View Article and Find Full Text PDFGlucose-6-Phosphate Dehydrogenase (G6PD) is a ubiquitous cytoplasmic enzyme converting glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway (PPP). The G6PD deficiency renders the inability to regenerate glutathione due to lack of Nicotine Adenosine Dinucleotide Phosphate (NADPH) and produces stress conditions that can cause oxidative injury to photoreceptors, retinal cells, and blood barrier function. In this study, we constructed pharmacophore-based models based on the complex of G6PD with compound AG1 (G6PD activator) followed by virtual screening.
View Article and Find Full Text PDFThe molecular mechanisms whereby placental growth factor (PlGF) mediates its effects in nonproliferative diabetic retinopathy (DR) are unknown. To better understand the role of PlGF in DR, we used tandem mass tags (TMT)-labeled quantitative proteomics to human retinal endothelial cells (HRECs), treated anti-PlGF antibody, and PBS as a control. Functional annotation and pathway enrichments were performed, which suggested that the differentially expressed proteins (DEPs) were involved in key metabolic processes, protein binding, and membrane, pentose phosphate pathway (PPP) and adherens junction.
View Article and Find Full Text PDFBackground: Retinal degenerative diseases affect millions of people and represent the leading cause of vision loss around the world. Retinal degeneration has been attributed to a wide variety of causes, such as disruption of genes involved in phototransduction, biosynthesis, folding of the rhodopsin molecule, and the structural support of the retina. The molecular pathogenesis of the biological events in retinal degeneration is unclear; however, the molecular basis of the retinal pathological defect can be potentially determined by gene-expression profiling of the whole retina.
View Article and Find Full Text PDFWe report that placental growth factor (PlGF) negatively affects the endothelial cell (EC) barrier function through a novel regulatory mechanism. The PlGF mAb promotes (but recombinant protein disrupts) EC barrier function, thus affecting the barrier-forming protein levels, membrane distribution, and EC monolayer impedance by the electrical cell-impedance sensing system, Western blot, and immunofluorescence staining. RNA sequencing-based transcriptome analysis identified the up-regulation of the pentose phosphate pathway (PPP) and the antioxidant defense protein by PlGF blockade.
View Article and Find Full Text PDFPrevious research has shown that CXCR5 mice develop retinal degeneration (RD) with age, a characteristic related to age macular degeneration (AMD). RD in these mice is not well-understood, and in this study, we sought to characterize further the RD phenotype and to gain mechanistic insights into the function of CXCR5 in the retina. CXCR5 and WT control mice were used.
View Article and Find Full Text PDFBackground: Tumor necrosis factor α (TNFα) is a multifunctional cytokine with a potent pro-inflammatory effect. It is a validated therapeutic target molecule for several disorders related to autoimmunity and inflammation. TNFα-TNF receptor-1 (TNFR1) signaling contributes to the pathological processes of these disorders.
View Article and Find Full Text PDFTherapeutic inhibition of hypoxia inducible factor-1α (HIF-1α) action has emerged as a potential approach for managing several diseases including breast cancer (BC). Genistein has been found to exert anti-malignant activity. However, its mechanisms of action remain unknown.
View Article and Find Full Text PDFBackground: Age-related macular degeneration (AMD) is the most common, progressive, and polygenic cause of irreversible visual impairment in the world. The molecular pathogenesis of the primary events of AMD is poorly understood. We have investigated a transcriptome-wide analysis of differential gene expression, single-nucleotide polymorphisms (SNPs), indels, and simple sequence repeats (SSRs) in datasets of the human peripheral retina and RPE-choroid-sclera control and AMD.
View Article and Find Full Text PDFPlacental growth factor (PlGF or PGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a crucial role in pathological angiogenesis and inflammation. However, the underlying molecular mechanisms that PlGF mediates regarding the complications of non-proliferative diabetic retinopathy (DR) remain elusive. Using an LC-MS/MS-based label-free quantification proteomic approach we characterized the alterations in protein expression caused by PlGF ablation in the retinas obtained from C57BL6, Akita, PlGF and Akita.
View Article and Find Full Text PDFPancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC.
View Article and Find Full Text PDFVivapain-3(VP-3) protein is a family of cysteine rich proteases of malaria parasite is extensively reported to participate in a range of wide cellular processes including survival. VP-3 of plasmodium recognized as an attractive drug target in vector-borne diseases like malaria. In the present study we robust a homology model of VP-3 protein and generated the pharmacophore based models adapted to screen the best drug like compounds from PubChem database.
View Article and Find Full Text PDF