To assess efficacy and toxicity of a drug in humans, it is important to measure the tissue concentration of a drug at the target site. For a drug that is transported into or out of the tissue, the tissue unbound steady-state concentration can be dramatically different from its corresponding unbound steady-state plasma concentration. Because routine measurement of drug tissue concentrations is not possible, using rosuvastatin as a model transporter substrate drug, we compared the ability of the proteomics-informed relative expression factor (REF) approach and sandwich-cultured human hepatocytes (SCH) to accurately predict rosuvastatin human hepatobiliary clearances and hepatic concentrations.
View Article and Find Full Text PDFFundam Clin Pharmacol
February 2022
Rivoceranib is a selective inhibitor of VEGFR-2 being developed for the treatment of solid tumor. The objective of the study was to evaluate the effect of food on bioavailability as well as single- and multiple-dose pharmacokinetics (PKs) of 81 and 201 mg doses of rivoceranib. The study was conducted as a two-part study.
View Article and Find Full Text PDFRivoceranib (known in China as apatinib) is a selective vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor which inhibits angiogenesis in solid tumors. The aim of study was to evaluate potential pharmacokinetic (PK) differences between the Caucasian, Japanese, and Chinese populations. An open-label, single-dose, parallel-design PK study of rivoceranib was conducted in Caucasian, Japanese, and Chinese subjects.
View Article and Find Full Text PDFPredicting transporter-mediated in vivo hepatic drug clearance (CL) from in vitro data (IVIVE) is important in drug development to estimate first-in-human dose and the impact of drug interactions and pharmacogenetics on hepatic drug CL. For IVIVE, one can use human hepatocytes and the traditional milligrams of protein content per gram of liver tissue (MGPGL) approach. However, this approach has been found to consistently underpredict the observed in vivo hepatic drug CL.
View Article and Find Full Text PDFErythropoietic protoporphyria (EPP) is an inherited disease caused by loss-of-function mutations of ferrochelatase, an enzyme in the heme biosynthesis pathway that converts protoporphyrin IX (PPIX) into heme. PPIX accumulation in patients with EPP leads to phototoxicity and hepatotoxicity, and there is no cure. Here, we demonstrated that the PPIX efflux transporter ABCG2 (also called BCRP) determines EPP-associated phototoxicity and hepatotoxicity.
View Article and Find Full Text PDFActivity of CYP3A, an enzyme responsible for metabolism of many marketed drugs, is induced by ~ 2-fold in pregnant women. Through studies in sandwich-cultured human hepatocytes (SCHH) and HepaRG cells, our laboratory has shown that this induction is likely mediated by the increase in cortisol plasma concentrations during pregnancy. Cortisol, at plasma concentrations observed during the third trimester (~ 800 nM), either alone or in combination with other pregnancy-related hormones, induces CYP3A activity in SCHH and HepaRG cells when cultured in dexamethasone-free media.
View Article and Find Full Text PDFErythropoietic protoporphyria (EPP) is a genetic disease that results from the defective mutation in the gene encoding ferrochelatase (FECH), the enzyme that converts protoporphyrin IX (PPIX) to heme. Liver injury and even liver failure can occur in EPP patients because of PPIX accumulation in the liver. The current study profiled the liver metabolome in an EPP mouse model caused by a Fech mutation (Fech-mut).
View Article and Find Full Text PDFThe ATP-binding cassette sub-family G member 2 (ABCG2) plays an important role in modulating drug disposition and endobiotic homeostasis. KO143 is a potent and relatively selective ABCG2 inhibitor. We found that the metabolic stability of KO143 was very poor in human liver microsomes (HLM).
View Article and Find Full Text PDFClinical drug-drug interactions (DDIs) can occur when multiple drugs are taken by the same patient. Significant DDIs can result in clinical toxicity or treatment failure. Therefore, DDI assessment is an integral part of drug development and the benefit-risk assessment of new therapies.
View Article and Find Full Text PDFChem Res Toxicol
August 2016
Isoniazid (INH) can cause hepatotoxicity. In addition, INH is contraindicated in patients suffering from porphyrias. Our metabolomic analysis revealed that chronic treatment with INH in mice causes a hepatic accumulation of protoporphyrin IX (PPIX).
View Article and Find Full Text PDFProtoporphyrin IX (PPIX) is ubiquitously present in all living cells in small amounts as a precursor of heme. PPIX has some biologic functions of its own, and PPIX-based strategies have been used for cancer diagnosis and treatment (the good). PPIX serves as the substrate for ferrochelatase, the final enzyme in heme biosynthesis, and its homeostasis is tightly regulated during heme synthesis.
View Article and Find Full Text PDFBiochem Pharmacol
December 2015
Griseofulvin (GSF) causes hepatic porphyria in mice, which mimics the liver injury associated with erythropoietic protoporphyria (EPP) in humans. The current study investigated the biochemical basis of GSF-induced liver injury in mice using a metabolimic approach. GSF treatment in mice resulted in significant accumulations of protoporphyrin IX (PPIX), N-methyl PPIX, bile acids, and glutathione (GSH) in the liver.
View Article and Find Full Text PDFWidespread usage of herbs as supplements or medicines raises the potential of herb-drug interactions (HDIs). Basically, HDIs occur by pharmacokinetic and/or pharmacodynamic pathways. Nuclear receptors (NRs) are a class of transcription factors whose role in drug interactions has been defined.
View Article and Find Full Text PDF