Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability).
View Article and Find Full Text PDF