Publications by authors named "Madhav P Thakur"

The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants.

View Article and Find Full Text PDF

Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery).

View Article and Find Full Text PDF

The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits.

View Article and Find Full Text PDF

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear.

View Article and Find Full Text PDF

Background: Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: (asexual) and (sexually reproducing).

View Article and Find Full Text PDF

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised.

View Article and Find Full Text PDF

The physiological performance of organisms depends on their environmental context, resulting in performance-response curves along environmental gradients. Parasite performance-response curves are generally expected to be broader than those of their hosts due to shorter generation times and hence faster adaptation. However, certain environmental conditions may limit parasite performance more than that of the host, thereby providing an environmental refuge from disease.

View Article and Find Full Text PDF

Plants influence numerous soil biotic factors that can alter the performance of later growing plants-defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Both plant species were grown separately establishing conspecific and heterospecific soils.

View Article and Find Full Text PDF

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown.

View Article and Find Full Text PDF

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type.

View Article and Find Full Text PDF

Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland).

View Article and Find Full Text PDF

Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature.

View Article and Find Full Text PDF

Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta-analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.

View Article and Find Full Text PDF

Plants allocate resources to processes related to growth and enemy defence. Simultaneously, they interact with complex soil microbiomes that also affect plant performance. While the influence of individual microbial groups on single plants is increasingly studied, effects of microbial interactions on growth, defence and growth-defence relationships remain unknown, especially at the plant community level.

View Article and Find Full Text PDF

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties.

View Article and Find Full Text PDF

Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists.

View Article and Find Full Text PDF

As ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes.

View Article and Find Full Text PDF

Recent research shows that earthworms can alter defense traits of plants against herbivores and pathogens by affecting soil biochemistry. Yet, the effects of invasive earthworms on defense traits of native plants from previously earthworm-free ecosystems as well as the consequences for multitrophic interactions are virtually unknown.Here we use a combination of an observational study and a complementary experimental study to investigate the effects of invasive earthworms on leaf defense traits, herbivore damage and pathogen infection in two poplar tree species ( and ) native to North American boreal forests.

View Article and Find Full Text PDF

Insects are among the most diverse and widespread animals across the biosphere and are well-known for their contributions to ecosystem functioning and services. Recent increases in the frequency and magnitude of climatic extremes (CE), in particular temperature extremes (TE) owing to anthropogenic climate change, are exposing insect populations and communities to unprecedented stresses. However, a major problem in understanding insect responses to TE is that they are still highly unpredictable both spatially and temporally, which reduces frequency- or direction-dependent selective responses by insects.

View Article and Find Full Text PDF

Climate change and land use intensification are the two most common global change drivers of biodiversity loss. Like other organisms, the soil meso-fauna are expected to modify their functional diversity and composition in response to climate and land use changes. Here, we investigated the functional responses of Collembola, one of the most abundant and ecologically important groups of soil invertebrates.

View Article and Find Full Text PDF

Understanding the general rules of microbial interactions is central for advancing microbial ecology. Recent studies show that interaction range, interaction strength, and community context determine bacterial interactions and the coexistence and evolution of bacteria. We highlight how these factors could contribute to a general understanding of bacterial interactions.

View Article and Find Full Text PDF

Recent studies have shown that invasive earthworms can dramatically reduce native biodiversity, both above and below the ground. However, we still lack a synthetic understanding of the underlying mechanisms behind these changes, such as whether earthworm effects on soil chemical properties drive such relationships. Here, we investigated the effects of invasive earthworms on soil chemical properties (pH, water content, and the stocks and fluxes of carbon, nitrogen, and phosphorus) by conducting a meta-analysis.

View Article and Find Full Text PDF

Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session92p9eo4b2g3ao2ufkfoqgt990t0b57gb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once