The single-molecule conductance of silanes is suppressed due to destructive quantum interference in conformations with cisoid dihedral angles along the molecular backbone. Yet, despite the structural similarity, σ-interference effects have not been observed in alkanes. Here we report that the methyl substituents used in silanes are a prerequisite for σ-interference in these systems.
View Article and Find Full Text PDFLinear silanes are efficient molecular wires due to strong σ-conjugation in the transoid conformation; however, the structure-function relationship for the conformational dependence of the single-molecule conductance of silanes remains untested. Here we report the syntheses, electrical measurements, and theoretical characterization of four series of functionalized cyclic and bicyclic silanes including a cyclotetrasilane, a cyclopentasilane, a bicyclo[2.2.
View Article and Find Full Text PDFThis Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire.
View Article and Find Full Text PDFHere we examine the impact of ring conformation on the charge transport characteristics of cyclic pentasilane structures bound to gold electrodes in single molecule junctions. We investigate the conductance properties of alkylated cyclopentasilane and stereoisomers substituted in the 1,3-position with methylthiomethyl electrode binding groups using both the scanning tunneling microscope-based break junction technique and density functional theory based calculations. In contrast with the linear ones, these cyclic silanes yield lower conductance values; calculations reveal that the constrained dihedral geometries occurring within the ring are suboptimal for σ-orbital delocalization, and therefore, conductance.
View Article and Find Full Text PDFA highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials.
View Article and Find Full Text PDFWhile the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2011
Highly porous fibers were prepared by water-bath electrospinning from pure poly(ɛ-caprolactone) (PCL), and its blends with methoxy poly(ethylene glycol) (MPEG). These fibers were further analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and gravimetric as well as contact angle measurement. SEM images showed that the fibers diameters as well as pores diameter on the fibers were affected by the weight ratio of MPEG/PCL.
View Article and Find Full Text PDFTiO(2) nanotube array (TN) on titanium plate was fabricated by using an electrochemical method. The crystal structure and surface morphology of TN array was examined by X-ray diffraction (XRD) and Field Emission Scanning Electronic Microscopy (FE-SEM), respectively. The stability of the nanotube structure and crystal phase transition was studied at different temperatures in dry oxygen ambient.
View Article and Find Full Text PDF