Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Although neutrophils are known to be fundamental in controlling innate immune responses, their role in regulating adaptive immunity is just starting to be appreciated. We report that human neutrophils exposed to pregnancy hormones progesterone and estriol promote the establishment of maternal tolerance through the induction of a population of CD4 T cells displaying a GARPCD127FOXP3 phenotype following antigen activation. Neutrophil-induced T (niT) cells produce IL-10, IL-17, and VEGF and promote vessel growth in vitro.
View Article and Find Full Text PDFEffector-T-cell-mediated immunity depends on the efficient localization of antigen-primed lymphocytes to antigen-rich non-lymphoid tissue, which is facilitated by the expression of a unique set of "homing" receptors acquired by memory T cells. We report that engagement of the hepatocyte growth factor (HGF) receptor c-Met by heart-produced HGF during priming in the lymph nodes instructs T cell cardiotropism, which was associated with a specialized homing "signature" (c-Met(+)CCR4(+)CXCR3(+)). c-Met signals facilitated T cell recruitment to the heart via the chemokine receptor CCR5 by inducing autocrine CCR5 ligand release.
View Article and Find Full Text PDFIt is now well established that the effector T cell (Teff) response is regulated by a series of metabolic switches. Quiescent T cells predominantly require adenosine triphosphate-generating processes, whereas proliferating Teff require high metabolic flux through growth-promoting pathways, such as glycolysis. Pathways that control metabolism and immune cell function are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell effector functions.
View Article and Find Full Text PDFLocalization of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells to lymphoid and non-lymphoid tissue is instrumental for the effective control of immune responses. Compared with conventional T cells, Treg cells constitute a minute fraction of the T-cell repertoire. Despite this numeric disadvantage, Tregs efficiently migrate to sites of immune responses reaching an optimal number for the regulation of T effector (Teff) cells.
View Article and Find Full Text PDFThe role of CD31, an Ig-like molecule expressed by leukocytes and endothelial cells (ECs), in the regulation of T lymphocyte trafficking remains contentious. Using CD31-deficient mice, we show that CD31 regulates both constitutive and inflammation-induced T cell migration in vivo. Specifically, T cell:EC interactions mediated by CD31 molecules are required for efficient localization of naive T lymphocytes to secondary lymphoid tissue and constitutive recirculation of primed T cells to nonlymphoid tissues.
View Article and Find Full Text PDFCD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified.
View Article and Find Full Text PDF