Evaluating diagnostic test accuracy during epidemics is difficult due to an urgent need for test availability, changing disease prevalence and pathogen characteristics, and constantly evolving testing aims and applications. Based on lessons learned during the SARS-CoV-2 pandemic, we introduce a framework for rapid diagnostic test development, evaluation, and validation during outbreaks of emerging infections. The framework is based on the feedback loop between test accuracy evaluation, modelling studies for public health decision-making, and impact of public health interventions.
View Article and Find Full Text PDFBackground: Many European countries experienced outbreaks of mpox in 2022, and there was an mpox outbreak in 2023 in the Democratic Republic of Congo. There were many apparent differences between these outbreaks and previous outbreaks of mpox; the recent outbreaks were observed in men who have sex with men after sexual encounters at common events, whereas earlier outbreaks were observed in a wider population with no identifiable link to sexual contacts. These apparent differences meant that data from previous outbreaks could not reliably be used to parametrise infectious disease models during the 2022 and 2023 mpox outbreaks, and modelling efforts were hampered by uncertainty around key transmission and immunity parameters.
View Article and Find Full Text PDFThe parametrisation of infectious disease models is often done based on epidemiological studies that use diagnostic and serology tests to establish disease prevalence or seroprevalence in the population being modelled. During outbreaks of an emerging infectious disease, tests are often used, both for disease control and epidemiological studies, before studies evaluating their accuracy in the population have concluded, with assumptions made about accuracy parameters like sensitivity and specificity. In this simulation study, we simulated such an outbreak, based on the case study of COVID-19, and found that inaccurate parametrisation of infectious disease models due to assumptions about antibody test accuracy in a seroprevalence study can cause modelling results that inform public health decisions to be inaccurate; for example, in our simulation setup, assuming that antibody test specificity was 0.
View Article and Find Full Text PDFBackground: One of the primary aims of contact restriction measures during the SARS-CoV-2 pandemic has been to protect people at increased risk of severe disease from the virus. Knowledge about the uptake of contact restriction measures in this group is critical for public health decision-making. We analysed data from the German contact survey COVIMOD to assess differences in contact patterns based on risk status, and compared this to pre-pandemic data to establish whether there was a differential response to contact reduction measures.
View Article and Find Full Text PDF