Publications by authors named "MadhU Khanna"

The global dengue outbreak is a significant public health concern, with the World Health Organization recording over 3 million cases and a 0.04% case fatality rate until July 2023. The infection rate is anticipated to rise in vulnerable regions worldwide.

View Article and Find Full Text PDF

Influenza viruses are known to cause severe respiratory infections in humans, often associated with significant morbidity and mortality rates. Virus replication relies on various host factors and pathways, which also determine the virus's infectious potential. Nonetheless, achieving a comprehensive understanding of how the virus interacts with host cellular components is essential for developing effective therapeutic strategies.

View Article and Find Full Text PDF

Cellulosic biomass-based sustainable aviation fuels (SAFs) can be produced from various feedstocks. The breakeven price and carbon intensity of these feedstock-to-SAF pathways are likely to differ across feedstocks and across spatial locations due to differences in feedstock attributes, productivity, opportunity costs of land for feedstock production, soil carbon effects, and feedstock composition. We integrate feedstock to fuel supply chain economics and life-cycle carbon accounting using the same system boundary to quantify and compare the spatially varying greenhouse gas (GHG) intensities and costs of GHG abatement with SAFs derived from four feedstocks (switchgrass, miscanthus, energy sorghum, and corn stover) at 4 km resolution across the U.

View Article and Find Full Text PDF

Dengue virus (DENV) infection continues to be a public health challenge, lacking a specific cure. Vaccination remains the primary strategy against dengue; however, existing live-attenuated vaccines display variable efficacy across four serotypes, influenced by host serostatus and age, and predominantly inducing humoral responses. To address this limitation, this study investigates a multiepitope-based immunogen designed to induce robust cellular immunity across all DENV serotypes.

View Article and Find Full Text PDF

The slowing of agricultural productivity growth globally over the past two decades has brought a new urgency to detect its drivers and potential solutions. We show that air pollution, particularly surface ozone (O), is strongly associated with declining agricultural total factor productivity (TFP) in China. We employ machine learning algorithms to generate estimates of high-resolution surface O concentrations from 2002 to 2019.

View Article and Find Full Text PDF

Bioenergy with carbon capture and storage (BECCS) sits at the nexus of the climate and energy security. We evaluated trade-offs between scenarios that support climate stabilization (negative emissions and net climate benefit) or energy security (ethanol production). Our spatially explicit model indicates that the foregone climate benefit from abandoned cropland (opportunity cost) increased carbon emissions per unit of energy produced by 14-36%, making geologic carbon capture and storage necessary to achieve negative emissions from any given energy crop.

View Article and Find Full Text PDF

Objective: New-onset or persistent symptoms beyond after 4 weeks from COVID-19 are termed "long-COVID." Whether the initial severity of COVID-19 has a bearing on the clinicoradiological manifestations of long COVID is an area of interest.

Material And Methods: We did an observational analysis of the long-COVID patients after categorizing them based on their course of COVID-19 illness into mild, moderate, and severe groups.

View Article and Find Full Text PDF

Purpose: Quantitative PCR (qPCR) is a reliable and robust technique for gene expression analysis, but its efficacy is dependent on the normalization of qPCR data with the stably expressed reference gene. Selection of a suitable reference gene is mandatory for accurate gene expression analysis, till data the most appropriate reference gene during chikungunya virus infection has not been elucidated.

Method: In this study the expression of reference genes(GAPDH, GUSB, HPRT, Beta-actin, 18S rRNA) was analysed during chikungunya virus infection by quantitative PCR.

View Article and Find Full Text PDF

Cellulosic biofuels are part of a portfolio of solutions to address climate change; however, their production remains expensive and federal policy interventions (e.g., Renewable Fuel Standard) have not spurred broad construction of cellulosic biorefineries.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses, like the chikungunya virus, hijack host cell machinery to create viral proteins, disrupting the Endoplasmic Reticulum and activating the Unfolded Protein Response (UPR).
  • Researchers found that chikungunya virus positively influenced certain UPR branches (IRE1 and ATF6) while suppressing another (PERK).
  • By using specific inhibitors for UPR pathways, they observed a significant reduction in viral replication, suggesting a new approach for developing antiviral treatments against chikungunya.
View Article and Find Full Text PDF

Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells.

View Article and Find Full Text PDF

Utilization of marginal land for growing dedicated bioenergy crops for second-generation biofuels is appealing to avoid conflicts with food production. This study develops a novel framework to quantify marginal land for the Contiguous United States (CONUS) based on a history of satellite-observed land use change (LUC) over the 2008-2015 period. Frequent LUC between crop and noncrop is assumed to be an indicator of economically marginal land; this land is also likely to have a lower opportunity cost of conversion from food crop to bioenergy crop production.

View Article and Find Full Text PDF

We quantify long-run adaptation of U.S. corn and soybean yields to changes in temperature and precipitation over 1951-2017.

View Article and Find Full Text PDF

Unfolded protein response (UPR) is an evolutionarily conserved pathway triggered during perturbation of endoplasmic reticulum (ER) homeostasis in response to the accumulation of unfolded/misfolded proteins under various stress conditions like viral infection, diseased states etc. It is an adaptive signalling cascade with the main purpose of relieving the stress from the ER, which may otherwise lead to the initiation of cell death via apoptosis. ER stress if prolonged, contribute to the aetiology of various diseases like cancer, type II diabetes, neurodegenerative diseases, viral infections etc.

View Article and Find Full Text PDF

Demand for biofuel production driven by the Renewable Fuel Standard (RFS2) has coincided with increased land in corn production and increasing nitrogen (N) loss to the Gulf of Mexico. Diversifying cropland with perennial energy crops (miscanthus and switchgrass) may reduce N loss and improve water quality. However, the extent of these benefits depends on the mix of biomass feedstocks (corn stover, perennials) incentivized by the RFS2 and the extent to which energy crops displace N-intensive row crops.

View Article and Find Full Text PDF

Using land already enrolled in the Conservation Reserve Program (CRP) in the eastern region of the U.S. for producing energy crops for bioenergy while reducing land rental payments offers the potential for lowering the program costs, increasing returns to CRP landowners, and displacing greenhouse gas (GHG) emissions from fossil fuels.

View Article and Find Full Text PDF

An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at risk of acquiring dengue virus infection. About 390 million cases of dengue are reported each year with higher prevalence in the developing world.

View Article and Find Full Text PDF

COVID-19 has led to an unprecedented reduction in demand for energy for transportation and electricity, a crash in prices and employment in the fossil fuel industries and record-breaking reductions in global carbon emissions. This paper discusses whether this "demand destruction" could spell the beginning of the end for fossil fuels or a temporary recession and the imperative to recover from the current crisis by "building back better" and not the same as before. There are encouraging signs for the renewable energy industry that could make COVID-19 a cloud with a silver lining; whether this is the case will depend not only on the technological realities and social response to the crisis but also on political will and foresight.

View Article and Find Full Text PDF

The pandemic of COVID-19 has emerged as a serious health crisis globally and India too has been extensively affected with 604,641 active cases reported, till date. The present study focuses on the demographic, clinical and laboratory profile of such patients from a tertiary level non-COVID respiratory care hospital. This is a retrospective observational study.

View Article and Find Full Text PDF

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius.

View Article and Find Full Text PDF

The processing of polyprotein(s) to form structural and non-structural components remains an enigma due to the non-existence of an efficient and robust Hepatitis E Virus (HEV) culture system. We used the BacMam approach to construct an HEV replication model in which the HEV genome was cloned in the BacMam vector under the CMV promoter. The recombinant BacMam was used to infect Huh7 cells to transfer the HEV genome.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying viral pathology, structure and molecular biology, as well as diagnosis of this disease, there is still no virus-specific drug in clinical use. Structural and nonstructural proteins produced during the coxsackievirus life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds.

View Article and Find Full Text PDF

This data represents the effect of miR-155 on the expression of commonly used housekeeping genes, GAPDH, Beta Actin, RPL13A, and U6. The human miR-155 and control RNA were transfected to A549 cells by electroporation. Expression of these genes was compared in both groups by real-time PCR.

View Article and Find Full Text PDF

Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity.

View Article and Find Full Text PDF

Biofuels policies induce land use changes (LUC), including cropland expansion and crop switching, and this in turn alters water and soil management practices. Policies differ in the extent and type of land use changes they induce and therefore in their impact on water resources. We quantify and compare the spatially varying water impacts of biofuel crops stemming from LUC induced by two different biofuels policies by coupling a biophysical model with an economic model to simulate the economically viable mix of crops, land uses, and crop management choices under alternative policy scenarios.

View Article and Find Full Text PDF