Publications by authors named "Madelyn Moore"

G protein-coupled receptors (GPCRs), the largest family of drug targets, can signal through 16 subtypes of Gα proteins. Biased compounds that selectively activate therapy-relevant pathways promise to be safer, more effective medications. The determinants of bias are poorly understood, however, and rationally-designed, G protein-subtype-selective compounds are lacking.

View Article and Find Full Text PDF

T cell immune tolerance is established in part through the activity of the Auto-immune Regulator (AIRE) transcription factor in the medullary Thymic Epithelial Cells (mTEC) of the thymus. AIRE induces expression of SELF peripheral tissue-specific antigens for presentation to naïve T cells to promote activation/deletion of potentially autoreactive T cells. We show, for the first time to our knowledge, that tumors mimic the role of AIRE in mTEC to evade immune rejection.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs), the largest family of drug targets, can signal through 16 subtypes of Gα proteins. Biased compounds that selectively activate therapy-relevant pathways promise to be safer, more effective medications. The determinants of bias are poorly understood, however, and rationally-designed, G protein-subtype-selective compounds are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint inhibition (ICI) therapy is often effective against various tumors but faces resistance in immune suppressive microenvironments, particularly in hepatocellular carcinoma (HCC).
  • Research on an oncolytic virus (VSV-IFNß) indicates that it can hinder the effectiveness of anti-PD-L1 therapy by expanding antiviral T cells, which then outcompete and reduce anti-tumor T cell populations.
  • However, incorporating HCC tumor antigens into the virus can restore the effectiveness of combined oncolytic virotherapy and anti-PD-L1 treatment by promoting the activation of anti-tumor T cells.
View Article and Find Full Text PDF

During diabetes progression, β-cell dysfunction due to loss of potassium channels sensitive to ATP, known as KATP channels, occurs, contributing to hyperglycemia. The aim of this study was to investigate if KATP channel expression or activity in the nervous system was altered in a high-fat diet (HFD)-fed mouse model of diet-induced obesity. Expression of two KATP channel subunits, Kcnj11 (Kir6.

View Article and Find Full Text PDF

Although immune checkpoint inhibition (ICI) has produced profound survival benefits in a broad variety of tumors, a proportion of patients do not respond. Treatment failure is in part due to immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, we developed a vesicular stomatitis virus expressing interferon-ß (VSV-IFNß) as a viro-immunotherapy against HCC.

View Article and Find Full Text PDF

Introduction: Metastatic uveal melanoma (MUM) has a poor prognosis and treatment options are limited. These patients do not typically experience durable responses to immune checkpoint inhibitors (ICIs). Oncolytic viruses (OV) represent a novel approach to immunotherapy for patients with MUM.

View Article and Find Full Text PDF

During diabetes, β-cell dysfunction due to loss of potassium channels sensitive to ATP, known as K channels occurs progressively over time contributing to hyperglycemia. K channels are additionally present in the central and peripheral nervous systems and are downstream targets of opioid receptor signaling. The aim of this study is to investigate if K channel expression or activity in the nervous system changes in diabetic mice and if morphine antinociception changes in mice fed a high fat diet (HFD) for 16 weeks compared to controls.

View Article and Find Full Text PDF

In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 () gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes.

View Article and Find Full Text PDF

Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance.

View Article and Find Full Text PDF

ATP-sensitive potassium (K) channels are found in the nervous system and are downstream targets of opioid receptors. K channel activity can effect morphine efficacy and may beneficial for relieving chronic pain in the peripheral and central nervous system. Unfortunately, the K channels exists as a heterooctomers, and the exact subtypes responsible for the contribution to chronic pain and opioid signaling in either dorsal root ganglia (DRG) or the spinal cord are yet unknown.

View Article and Find Full Text PDF

The α-oxidized thioimidates are useful bidentate ligands and are important motifs in pharmaceuticals, pesticides, and fungicides. Despite their broad utility, a direct route for their synthesis has been elusive. Herein, we describe a one-step synthesis of ,-dicarbamoyl 2-iminothioimidates from easily accessible thioacetylenes and commercially available azodicarboxylates (20 examples, ≤99% yield).

View Article and Find Full Text PDF

A formal [2 + 2] cycloaddition of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with electron-rich alkynyl sulfides and selenides is described. These investigations provide a convenient method to access diazacyclobutenes in good yield while tolerating a relatively broad substrate scope of thio-acetylenes. This method provides ready access to a unique and hitherto rarely accessible class of heterocycles.

View Article and Find Full Text PDF