Publications by authors named "Madeline Y Ryu"

Importance: Moral injury and distress (MID), which occurs when individuals have significant dissonance with their belief system and overwhelming feelings of being powerless to do what is believed to be right, has not been explored in the unique population of military surgeons deployed far forward in active combat settings. Deployed military surgeons provide care to both injured soldiers and civilians under command-driven medical rules of engagement (MROE) in variably resourced settings. This practice setting has no civilian corollary for comparison or current specific tool for measurement.

View Article and Find Full Text PDF

A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint.

View Article and Find Full Text PDF

Here, a method to synthesize cellulose nanofiber biotemplated palladium composite aerogels is presented. Noble metal aerogel synthesis methods often result in fragile aerogels with poor shape control. The use of carboxymethylated cellulose nanofibers (CNFs) to form a covalently bonded hydrogel allows for the reduction of metal ions such as palladium on the CNFs with control over both nanostructure and macroscopic aerogel monolith shape after supercritical drying.

View Article and Find Full Text PDF

Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 μm decorated with noble metal nanoparticles.

View Article and Find Full Text PDF

Here, a method to synthesize gold, palladium, and platinum aerogels via a rapid, direct solution-based reduction is presented. The combination of various precursor noble metal ions with reducing agents in a 1:1 (v/v) ratio results in the formation of metal gels within seconds to minutes compared to much longer synthesis times for other techniques such as sol-gel. Conducting the reduction step in a microcentrifuge tube or small volume conical tube facilitates a proposed nucleation, growth, densification, fusion, equilibration model for gel formation, with final gel geometry smaller than the initial reaction volume.

View Article and Find Full Text PDF

Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol⁻gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts.

View Article and Find Full Text PDF