For decades, mathematical models have been used to understand the course and outcome of malaria infections (i.e., infection dynamics) and the evolutionary dynamics of the parasites that cause them.
View Article and Find Full Text PDFAs a corollary to the Red Queen hypothesis, host-parasite coevolution has been hypothesized to maintain genetic variation in both species. Recent theoretical work, however, suggests that reciprocal natural selection alone is insufficient to maintain variation at individual loci. As highlighted by our brief review of the theoretical literature, models of host-parasite coevolution often vary along multiple axes (e.
View Article and Find Full Text PDFInferring biological processes from population dynamics is a common challenge in ecology, particularly when faced with incomplete data. This challenge extends to inferring parasite traits from within-host infection dynamics. We focus on rodent malaria infections (), a system for which previous work inferred an immune-mediated extension in the length of the parasite development cycle within red blood cells.
View Article and Find Full Text PDFImmunotherapy has been established as a standard of care for patients with malignant melanoma, however, the long-term side-effects of immunotherapy are still emerging. Studies over the last decade have documented increasing reports of endocrine dysfunction following the initiation of immunotherapy. Our study aimed to detect the proportion of men who have low testosterone before, during, and or/after receiving immunotherapy for malignant melanoma, and to determine the proportion of men who receive testosterone replacement therapy after detection of low testosterone.
View Article and Find Full Text PDFMitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes-the mitochondrial genome and the nuclear genome-and selection is expected to maintain functional mito-nuclear interactions. The documented high levels of polymorphism in genes involved in these mito-nuclear interactions and wide variation for mitochondrial function demands an explanation for how and why variability in such a fundamental trait is maintained.
View Article and Find Full Text PDFPremise: The ecological outcomes of mutualism are well known to shift across abiotic or biotic environments, but few studies have addressed how different environments impact evolutionary responses, including the intensity of selection on and the expression of genetic variance in key mutualism-related traits.
Methods: We planted 30 maternal lines of the legume Medicago lupulina in four field common gardens and compared our measures of selection on and genetic variance in nodulation, a key trait reflecting legume investment in the symbiosis, with those from a previous greenhouse experiment using the same 30 M. lupulina lines.
Pollen is generally dispersed over short distances, which promotes population genetic structure across continuous two-dimensional space. Quantitative genetic variance in flowering time structures mating pools in the temporal dimension, at least with respect to the phenology loci. We asked if these two phenomena, isolation by distance (IBD) and isolation by phenology (IBP), synergistically promote genetic structure.
View Article and Find Full Text PDFCoexpression of genes in plant sporophytes and gametophytes allows correlated gametic and sporophytic selection. Theory predicts that, under outcrossing, an allele conferring greater pollen competitive ability should fix within a population unless antagonistic pleiotropy with the sporophyte stage is strong. However, under strong selfing, pollen competitiveness is immaterial as superior and inferior competitors are deposited on opposite stigmas, producing assortative competition.
View Article and Find Full Text PDF