Background: Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood.
Objectives: The purposes of these studies were to determine the role of glucose-dependent insulinotropic polypeptide receptor in male fertility using Gipr knockout mice and anti-glucose-dependent insulinotropic polypeptide receptor antibody-treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates.
Methods And Materials: Adiponectin promoter-driven Gipr knockout male mice (Gipr ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology.
In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, "Workshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions". The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests.
View Article and Find Full Text PDFTo assess relative sensitivity for detection of cytokines and chemokines in cynomolgus serum samples, we tested three commercially available multiplex array kits using the Luminex® platform with sera from animals exposed by intravenous injection to 150 μg/kg staphylococcal enterotoxin B (SEB) or 20 μg/kg lipopolysaccharide (LPS). Each of these kits detected similar patterns of changes in circulating cytokines/chemokines in response to SEB or LPS stimulation, especially the induction of high amounts of interleukin (IL)-2 and interferon-gamma (IFN-γ) in response to SEB but not LPS. However, there were clear differences in sensitivity for particular analytes, especially for IL-10.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are a rare subset of lymphocytes that inhibit the activation and effector functions of T cells and are important regulators of immune responses. Although Tregs are well characterized in humans and rodents, little is known about their immunophenotyping (IP) profile in cynomolgus macaques (Macaca fascicularis), which is an important species for pharmacological and toxicological evaluation of potential immune modulators because of their similar physiologic, genetic, and metabolic response patterns to humans. The authors have developed an immunophenotyping panel using a high-throughput 96-well microtiter plate-based assay to detect circulating Tregs (CD3(+)CD4(+)CD25(hi)FoxP3(+)) and have determined the normal range for the number of Tregs in naive healthy cynomolgus macaques to be 56.
View Article and Find Full Text PDFRegulatory T cells (Tregs) constitute a subset of lymphocytes that have the capability of suppressing immune responses in vivo and in vitro both directly by cell-cell contact and indirectly through the production of anti-inflammatory cytokines, such as interleukin-10 and tumor growth factor-β. Tregs constitute a small subset of T lymphocytes, yet their presence can prevent and control autoimmune disease and organ transplant rejection and contribute to maternal tolerance of fetal alloantigens, whereas their absence results in uncontrolled inflammation. But Treg function may not always be considered beneficial: There is growing evidence that the immunosuppressive effects of Tregs are also associated with growth of tumor cells.
View Article and Find Full Text PDFCurrent evidence indicates that the chronic inflammation observed in the intestines of patients with inflammatory bowel disease is due to an aberrant immune response to enteric flora. We have developed a lipid A-mimetic, CRX-526, which has antagonistic activity for TLR4 and can block the interaction of LPS with the immune system. CRX-526 can prevent the expression of proinflammatory genes stimulated by LPS in vitro.
View Article and Find Full Text PDF