Publications by authors named "Madeleine Norris"

Purpose: Although several different contouring instructional programs are available to radiation oncologists and trainees, very little is known about which methods and resources benefit learners most, and whether some learners may need alternate forms of instruction. This study aimed to determine the factors that were predictors of learners' success in anatomy, radiology, and contouring education.

Methods And Materials: Participants in the online and face-to-face Anatomy and Radiology Contouring (ARC) Bootcamp completed pre- and postintervention evaluations that assessed anatomy/radiology knowledge, contouring skills, self-confidence, and spatial ability.

View Article and Find Full Text PDF

Purpose: The Anatomy and Radiology Contouring (ARC) Bootcamp was a face-to-face (F2F) intervention providing integrated education for radiation oncology (RO) residents and medical physicists. To increase access, we launched an online offering in 2019. We evaluated the effect of the online course on participants' knowledge acquisition, contouring skills, and self-confidence by comparing it with the F2F course.

View Article and Find Full Text PDF

Background: As new treatments and technologies have been introduced in radiation oncology, the clinical roles of radiation therapists (RTs) have expanded. However, there are few formal learning opportunities for RTs. An online, anatomy, radiology and contouring bootcamp (ARC Bootcamp) originally designed for medical residents was identified as a prospective educational tool for RTs.

View Article and Find Full Text PDF

Background: The Anatomy and Radiology Contouring (ARC) Bootcamp was a face-to-face (F2F) course designed to ensure radiation oncology residents were equipped with the knowledge and skillset to use radiation therapy techniques properly. The ARC Bootcamp was proven to be a useful educational intervention for improving learners' knowledge of anatomy and radiology and contouring ability. An online version of the course was created to increase accessibility to the ARC Bootcamp and provide a flexible, self-paced learning environment.

View Article and Find Full Text PDF

Basic sciences are a cornerstone of undergraduate medical education (UME), yet research indicates that students' basic science knowledge is not well retained. Many UME curricula are increasing the integration between the basic and clinical sciences with the goal of enhancing students' knowledge levels; however, the impact of clerkship training on students' basic science knowledge remains inconclusive. Thus, using clerkship directors' expectations as framework, we aimed to assess third-year medical students' basic science knowledge during clerkship training and evaluate the influence of clerkship training on their basic science knowledge.

View Article and Find Full Text PDF

Purpose: Simulation-based medical education is an effective tool for medical teaching, but simulation-based medical education deployment in radiation oncology (RO) is limited. Flexible nasopharyngoscopy (FNP), an essential skill for RO residents, requires practice that typically occurs on volunteer patients, introducing the potential for stress and discomfort. We sought to develop a high-fidelity simulator and intervention that provides RO residents the opportunity to develop FNP skills in a low-pressure environment.

View Article and Find Full Text PDF

Basic sciences are a cornerstone of undergraduate medical education (UME) as they provide a necessary foundation for the clinical sciences to be built upon and help foster trainees' competency. However, research indicates that students' basic science knowledge is not well retained, and as a result, students are ill-prepared, with respect to their basic science knowledge, when entering clerkship. One potential reason why students may not be prepared for clerkship is a lack of understanding as to which basic science concepts are critical for medical students to retain from pre-clerkship.

View Article and Find Full Text PDF

Background: The ligamentum mucosum is composed of dense regular connective tissue and traverses from the distal femur to the infrapatellar fat pad. While the gross and histologic morphology has been studied, there is currently no evidence concerning the biomechanical properties of the ligamentum mucosum and the potential of anterior knee pain. The purpose of this study was to determine the anatomical, mechanical and histological properties of the ligamentum mucosum.

View Article and Find Full Text PDF

Purpose: The purpose of the current investigation was to characterize biomechanical differences between the supra- and infra-meniscal sections of the anterolateral ligament (ALL). We hypothesized that the supra-meniscal fibers of the ALL would be stronger and stiffer than the infra-meniscal fiber.

Methods: Nine cadaveric knee specimens [mean (SD) age = 79 (14.

View Article and Find Full Text PDF