Publications by authors named "Madeleine L Craze"

The glutamine metabolism has a key role in the regulation of uncontrolled tumour growth. This study aimed to evaluate the expression and prognostic significance of glutaminase in luminal breast cancer (BC). The glutaminase isoforms (GLS/GLS2) were assessed at genomic/transcriptomic levels, using METABRIC ( = 1398) and GeneMiner datasets ( = 4712), and protein using immunohistochemistry in well-characterised cohorts of Oestrogen receptor-positive/HER2-negative BC patients: ductal carcinoma in situ (DCIS; = 206) and invasive breast cancer (IBC; = 717).

View Article and Find Full Text PDF

Purpose: Identification of effective biomarkers for the benefit of endocrine treatment and understanding the molecular pathways that contribute to the development of resistance are of crucial importance to the management of luminal breast cancer. The amino acid transporter SLC1A5 has emerging importance as a prognostic marker and potential therapeutic target in various types of cancer. This study aims to investigate its role in luminal breast cancer as a potential predictive marker for endocrine treatment.

View Article and Find Full Text PDF

Background: Glutamine (Gln) is an abundant nutrient used by cancer cells. Breast cancers cells and particularly triple-receptor negative breast cancer (TNBC) are reported to be dependent on Gln to produce the energy required for survival and proliferation. Despite intense research on the role of the intracellular Gln pathway, few reports have focussed on Gln transporters in breast cancer and TNBC.

View Article and Find Full Text PDF

Background: PPFIA1 is an important regulator of cell migration and invasion, regulating focal adhesion signalling and disassembly. PPFIA1 is frequently amplified in breast cancer, and recent functional studies indicate that PPFIA1 is an important promoter of migration and invasion in breast cancer. This study aims to evaluate the utility of PPFIA1 expression in the luminal breast cancer as a prognostic marker to predict the response to endocrine therapy.

View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is a heterogeneous disease consisting of various subtypes, with different prognostic and therapeutic outcomes. The amino acid transporter, SLC7A8, is overexpressed in oestrogen receptor-positive BC. However, the consequence of this overexpression, in terms of disease prognosis, is still obscure.

View Article and Find Full Text PDF

The majority of breast cancers are oestrogen-receptor-positive (ER+) and are subject to endocrine therapy; however, an unpredictable subgroup of patients will develop resistance to endocrine therapy. The SLC7A5/SLC3A2 complex is a major route for the transport of large neutral essential amino acids through the plasma membrane. Alterations in the expression and function of those amino-acid transporters lead to metabolic reprogramming, which contributes to the tumorigenesis and drug resistance.

View Article and Find Full Text PDF

Background: Cancer cells must alter their metabolism to support proliferation. Immune evasion also plays a role in supporting tumour progression. This study aimed to find whether enhanced glutamine uptake in breast cancer (BC) can derive the existence of specific immune cell subtypes, including the subsequent impact on patient outcome.

View Article and Find Full Text PDF

Increased glutamine metabolism (glutaminolysis) is a hallmark of cancer and is recognised as a key metabolic change in cancer cells. Breast cancer is a heterogeneous disease with different morphological and molecular subtypes and responses to therapy, and breast cancer cells are known to rewire glutamine metabolism to support survival and proliferation. Glutaminase isoenzymes (GLS and GLS2) are key enzymes for glutamine metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Endocrine therapy is commonly used to treat a type of breast cancer called ER+ breast cancer, but many patients don't respond well to it over time.
  • Researchers studied a protein called CDC20 to see if it could help predict how well patients would do with this treatment.
  • They found that high levels of CDC20 in breast cancer patients were linked to worse outcomes, including larger tumors and less effective treatment responses.
View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity, and patient outcome. Glutamine availability for growth and progression of BC is important in several BC subtypes. This study aimed to evaluate the biological and prognostic role of the combined expression of key glutamine transporters, SLC1A5, SLC7A5, and SLC3A2 in BC with emphasis on the intrinsic molecular subtypes.

View Article and Find Full Text PDF

Background: Dysregulated cellular metabolism is one of the hallmarks of cancer with some tumours utilising the glutamine metabolism pathway for their sustained proliferation and survival. Glutamate dehydrogenase (GLUD1) is a key enzyme in glutaminolysis converting glutamate to α-ketoglutarate for entry into the TCA cycle. Breast cancer (BC) comprises a heterogeneous group of tumours in terms of molecular biology and clinical behaviour, and we have previously shown that altered glutamine metabolism varies substantially among the different molecular subtypes.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is a heterogeneous disease characterised by variant biology and patient outcome. The amino acid transporter, SLC7A5, plays a role in BC although its impact on patient outcome in different BC subtypes remains to be validated. This study aimed to determine whether the clinicopathological and prognostic value of SLC7A5 is different within the molecular classes of BC.

View Article and Find Full Text PDF

Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity and patient outcome. This study aimed to evaluate the biological and prognostic value of the membrane solute carrier, SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. SLC3A2 was assessed at the genomic level, using METABRIC data (n = 1980), and at the proteomic level, using immunohistochemistry on tissue microarray (TMA) sections constructed from a large well-characterised primary BC cohort (n = 2500).

View Article and Find Full Text PDF

The complex interplay of the tumour microenvironment (TME) and its role in disease progression and response to therapy is poorly understood. The majority of studies to date focus on individual components or molecules within the TME and so lack the power correlative analysis. Here we have performed a multi-parameter analysis of the TME in 62 resectable non-small cell lung cancer (NSCLC) specimens detailing number and location of immune infiltrate, assessing markers of cancer-associated fibroblasts, caveolin-1 and tenascin-C, and correlating with clinicopathological details, as well as markers of disease progression such as epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Background: Altered cellular metabolism is a hallmark of cancer and some are reliant on glutamine for sustained proliferation and survival. We hypothesise that the glutamine-proline regulatory axis has a key role in breast cancer (BC) in the highly proliferative classes.

Methods: Glutaminase (GLS), pyrroline-5-carboxylate synthetase (ALDH18A1), and pyrroline-5-carboxylate reductase 1 (PYCR1) were assessed at DNA/mRNA/protein levels in large, well-characterised cohorts.

View Article and Find Full Text PDF

Cancer cells must alter their metabolism in order to satisfy the demands of necessary energy and cellular building blocks. These metabolic alterations are mediated by many oncogenic changes that affect cellular signalling pathways, which result in sustained cell growth and proliferation. Recently, metabolomics has received great attention in the field of cancer research, and as the essential metabolic pathways that drive tumour growth and progression are determined the possibilities of new targets for therapeutic intervention are opened.

View Article and Find Full Text PDF

There is a growing recognition that current preclinical models do not reflect the tumor microenvironment in cellular, biological, and biophysical content and this may have a profound effect on drug efficacy testing, especially in the era of molecular-targeted agents. Here, we describe a method to directly embed low-passage patient tumor-derived tissue into basement membrane extract, ensuring a low proportion of cell death to anoikis and growth complementation by coculture with patient-derived cancer-associated fibroblasts (CAF). A range of solid tumors proved amenable to growth and pharmacologic testing in this 3D assay.

View Article and Find Full Text PDF