Publications by authors named "Madeleine L Ball"

Introduction: Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers.

Objectives: To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population.

View Article and Find Full Text PDF

Background: The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath.

View Article and Find Full Text PDF

The annual Breath Biopsy Conference hosted by Owlstone Medical gathers together the leading experts, early career researchers, and physicians working with breath as a biomarker platform for clinical purposes. The current topics in breath research are discussed and presented, and an overarching topical theme is identified and discussed as part of an expert panel to close the conference. The profiling of normal breath composition and the establishment of standards for analyzing breath compared to background signal were two important topics that were major focuses of this conference, as well as important innovative progress that has been made since last year, including the development of a non-invasive breath test for lung cancer and liver disease.

View Article and Find Full Text PDF

Chromatin state is thought to impart regulatory function to the underlying DNA sequence. This can be established through histone modifications and chromatin organisation, but exactly how these factors relate to one another to regulate gene expression is unclear. In this study, we have used super-resolution microscopy to image the Y loops of Drosophila melanogaster primary spermatocytes, which are enormous transcriptionally active chromatin fibres, each representing single transcription units that are individually resolvable in the nuclear interior.

View Article and Find Full Text PDF

While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units.

View Article and Find Full Text PDF