Publications by authors named "Madeleine Jennewein"

mRNA vaccines were the first to be authorized for use against SARS-CoV-2 and have since demonstrated high efficacy against serious illness and death. However, limitations in these vaccines have been recognized due to their requirement for cold storage, short durability of protection, and lack of access in low-resource regions. We have developed an easily-manufactured, potent self-amplifying RNA (saRNA) vaccine against SARS-CoV-2 that is stable at room temperature.

View Article and Find Full Text PDF

Heritable polymorphisms within the human IgG locus, collectively termed allotypes, have often been linked by statistical associations, but rarely mechanistically, to a wide range of disease states. One potential explanation for these associations is that IgG allotype alters host cell receptors' affinity for IgG, dampening or enhancing an immune response depending on the nature of the change and the receptors. In this work, a panel of allotypic antibody variants were evaluated using multiplexed, label-free biophysical methods and cell-based functional assays to determine what effect, if any, human IgG polymorphisms have on antibody function.

View Article and Find Full Text PDF

Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur.

View Article and Find Full Text PDF

Pregnancy represents a unique tolerogenic immune state which may alter susceptibility to infection and vaccine response. Here, we characterized humoral immunity to seasonal influenza vaccine strains in pregnant and non-pregnant women. Although serological responses to influenza remained largely intact during late pregnancy, distinct modifications were observed.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus (HIV)-exposed, uninfected (HEU) children have a higher risk of severe infection, but the causes are poorly understood. Emerging data point to altered antibody transfer in women with HIV (WHIV); however, specific perturbations and the influence of antiretroviral therapy (ART) and HIV viremia remain unclear.

Methods: We evaluated antigen-specific transplacental antibody transfer across 14 antigens in paired maternal and umbilical cord plasma from 352 Ugandan women; 176 were WHIV taking ART.

View Article and Find Full Text PDF

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating nanocages that combine structured antibody components with designed oligomers to enhance their interaction with specific receptors.* -
  • Eight different nanocage structures were produced and analyzed using electron microscopy, which confirmed their shapes matched anticipated designs.* -
  • These antibody nanocages showed improved signaling and immune responses in various biological processes, including enhanced apoptosis, angiogenesis, T cell activation, and better neutralization of SARS-CoV-2 pseudoviruses compared to traditional antibody approaches.*
View Article and Find Full Text PDF

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.

View Article and Find Full Text PDF

Changes in antibody glycosylation are linked to inflammation across several diseases. Alterations in bulk antibody galactosylation can predict rheumatic flares, act as a sensor for immune activation, predict gastric cancer relapse, track with biological age, shift with vaccination, change with HIV reservoir size on therapy, and decrease in HIV and HCV infections. However, whether changes in antibody Fc biology also track with reservoir rebound time remains unclear.

View Article and Find Full Text PDF

Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function.

View Article and Find Full Text PDF

While the RV144 HIV vaccine trial led to moderately reduced risk of HIV acquisition, emerging data from the HVTN702 trial point to the critical need to reexamine RV144-based correlates of reduced risk of protection. While in RV144, the induction of V2-binding, non-IgA, IgG3 antibody responses with nonneutralizing functions were linked to reduced risk of infection, the interactions between these signatures remain unclear. Thus, here we comprehensively profile the humoral immune response in 300 RV144 vaccinees to decipher the relationships between humoral biomarkers of protection.

View Article and Find Full Text PDF

Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood.

View Article and Find Full Text PDF

Antibody responses develop following SARS-CoV-2 infection, but little is known about their epitope specificities, clonality, binding affinities, epitopes, and neutralizing activity. We isolated B cells specific for the SARS-CoV-2 envelope glycoprotein spike (S) from a COVID-19-infected subject 21 days after the onset of clinical disease. 45 S-specific monoclonal antibodies were generated.

View Article and Find Full Text PDF

B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages.

View Article and Find Full Text PDF

Despite the worldwide success of vaccination, newborns remain vulnerable to infections. While neonatal vaccination has been hampered by maternal antibody-mediated dampening of immune responses, enhanced regulatory and tolerogenic mechanisms, and immune system immaturity, maternal pre-natal immunization aims to boost neonatal immunity via antibody transfer to the fetus. However, emerging data suggest that antibodies are not transferred equally across the placenta.

View Article and Find Full Text PDF

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to create a safe way to protect people from diseases like HIV using gene-based treatments that deliver special antibodies.
  • They tested this method on rhesus macaques and found that the best results happened with a specific amount of the delivery system in each injection and more injections helped increase the effect.
  • The study showed that this gene therapy could work well to boost immunity, and it also suggested that testing on monkeys can help understand how it might work in humans later on.
View Article and Find Full Text PDF
Article Synopsis
  • - Neonatal immunology research has faced challenges due to limited access to infant samples, but new techniques are helping to overcome this issue.
  • - Recent studies show that newborn immunity differs significantly but starts to become more uniform within the first three months after birth.
  • - During these crucial first months, both environmental and genetic factors play a significant role in shaping the infant's immune system, potentially affecting immunity throughout their life.
View Article and Find Full Text PDF

As placental mammals, the pregnant women and the fetus have intense and prolonged interactions during gestation. There is increasing evidence that multiple molecular as well as cellular components originating in pregnant women are transferred to the fetus. The transfer of maternal antibodies has long been recognized as a central component of newborn immunity against pathogens.

View Article and Find Full Text PDF

Beyond their role in neutralization, antibodies mediate functions such as phagocytosis, cytotoxicity, and maintenance of immune homeostasis. Two modifications to the constant domain control antibody activity: theirreversible genomic selection of isotype/subclass and alterations in glycosylation. Because glycosylation alters the affinity of antibodies for Fc receptors, evidence suggests that glycosylation is a central mechanism for the immune system to tune a broad range of biological activities.

View Article and Find Full Text PDF

Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens.

View Article and Find Full Text PDF