Publications by authors named "Madeleine J H van Oppen"

Fertile hybrids can enhance the adaptive capacity and resilience of species under stress by increasing genetic diversity within populations, masking the effects of deleterious recessive alleles, and facilitating the introgression of beneficial genetic variants into parental species. However, many hybrids are infertile. We compared the fertility of aquarium-reared F1 hybrid and purebred corals of the species and and examined the viability of early life stages of second-generation (F2) hybrid and back-crossed planula larvae and recruits.

View Article and Find Full Text PDF

Marine heatwaves are becoming more frequent during summer and pose a significant threat to coral reef ecosystems. Restoration efforts have the potential to support native coral populations and guard them against some degree of environmental change, while global action against climate change takes place. Interspecific hybridization is one approach through which resilient coral stock could be generated for restoration.

View Article and Find Full Text PDF

A critical component of ecosystem restoration projects involves using genetic data to select source material that will enhance success under current and future climates. However, the complexity and expense of applying genetic data is a barrier to its use outside of specialised scientific contexts. To help overcome this barrier, we developed Reef Adapt ( www.

View Article and Find Full Text PDF

Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs.

View Article and Find Full Text PDF

Interspecific hybridisation increases genetic diversity and has played a significant role in the evolution of corals in the genus Acropora. In vitro fertilisation can be used to increase the frequency of hybridisation among corals, potentially enhancing their ability to adapt to climate change. Here, we assessed the field performance of hybrids derived from the highly cross-fertile coral species Acropora sarmentosa and Acropora florida from the Great Barrier Reef.

View Article and Find Full Text PDF

Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance.

View Article and Find Full Text PDF

Chlamydiae are ubiquitous intracellular bacteria and infect a wide diversity of eukaryotes, including mammals. However, chlamydiae have never been reported to infect photosynthetic organisms. Here, we describe a novel chlamydial genus and species, Candidatus Algichlamydia australiensis, capable of infecting the photosynthetic dinoflagellate Cladocopium sp.

View Article and Find Full Text PDF

The algal endosymbiont enhances the resilience of coral reefs under thermal stress. can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The heat tolerance of corals is influenced by their symbionts, known as zooxanthellae, and manipulating these communities could help corals survive heatwaves.
  • Despite having naturally resilient symbionts, some corals still experience bleaching during high temperatures.
  • The review discusses experimental methods to enhance symbionts' thermal tolerance and outlines the necessary steps for applying these findings to coral reef restoration efforts.
View Article and Find Full Text PDF

Cnidarians, such as corals and sea anemones, associate with a wide range of bacteria that have essential functions, including nutrient cycling and the production of antimicrobial compounds. Within cnidarians, bacteria can colonize all microhabitats including the tissues. Among them are obligate intracellular bacteria of the phylum Chlamydiota (chlamydiae) whose impact on cnidarian hosts and holobionts, especially corals, remain unknown.

View Article and Find Full Text PDF

The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C).

View Article and Find Full Text PDF

Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments.

View Article and Find Full Text PDF

Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful.

View Article and Find Full Text PDF

Background: Nucleic acid-based analytical methods have greatly expanded our understanding of global prokaryotic diversity, yet standard metabarcoding methods provide no information on the most fundamental physiological state of bacteria, viability. Scleractinian corals harbour a complex microbiome in which bacterial symbionts play critical roles in maintaining health and functioning of the holobiont. However, the coral holobiont contains both dead and living bacteria.

View Article and Find Full Text PDF

Ocean warming has caused coral mass bleaching and mortality worldwide and the persistence of symbiotic reef-building corals requires rapid acclimation or adaptation. Experimental evolution of the coral's microalgal symbionts followed by their introduction into coral is one potential method to enhance coral thermotolerance. Heat-evolved microalgal symbionts of the generalist species, Cladocopium proliferum (strain SS8), were exposed to elevated temperature (31°C) for ~10 years, and were introduced into four genotypes of chemically bleached adult fragments of the scleractinian coral, Galaxea fascicularis.

View Article and Find Full Text PDF

Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Coral reefs are at risk due to ocean warming, leading to coral bleaching and potential death of corals.
  • To improve the heat tolerance of the symbiotic microalgae Cladocopium proliferum, researchers evolved it in high-temperature conditions for over a decade, altering its associated bacterial communities.
  • Transplanting bacteria from heat-evolved strains to wild-type strains improved overall growth but did not significantly enhance heat tolerance, indicating the role of bacteria in coral adaptation to climate change.
View Article and Find Full Text PDF

The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment.

View Article and Find Full Text PDF

Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of , and were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C).

View Article and Find Full Text PDF

Background: Reef-building corals are acutely threatened by ocean warming, calling for active interventions to reduce coral bleaching and mortality. Corals associate with a wide diversity of bacteria which can influence coral health, but knowledge of specific functions that may be beneficial for corals under thermal stress is scant. Under the oxidative stress theory of coral bleaching, bacteria that scavenge reactive oxygen (ROS) or nitrogen species (RNS) are expected to enhance coral thermal resilience.

View Article and Find Full Text PDF

Coral reefs are threatened by climate change, because it causes increasingly frequent and severe summer heatwaves, resulting in mass coral bleaching and mortality. Coral bleaching is believed to be driven by an excess production of reactive oxygen (ROS) and nitrogen species (RNS), yet their relative roles during thermal stress remain understudied. Here, we measured ROS and RNS net production, as well as activities of key enzymes involved in ROS scavenging (superoxide dismutase and catalase) and RNS synthesis (nitric oxide synthase) and linked these metrics to physiological measurements of cnidarian holobiont health during thermal stress.

View Article and Find Full Text PDF

Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral .

View Article and Find Full Text PDF

The existence of widespread species with the capacity to endure diverse, or variable, environments are of importance to ecological and genetic research, and conservation. Such "ecological generalists" are more likely to have key adaptations that allow them to better tolerate the physiological challenges of rapid climate change. Reef-building corals are dependent on endosymbiotic dinoflagellates (Family: Symbiodiniaceae) for their survival and growth.

View Article and Find Full Text PDF

The symbiotic partnership between corals and dinoflagellate algae is crucial to coral reefs. Corals provide their algal symbionts with shelter, carbon dioxide and nitrogen. In exchange, the symbiotic algae supply their animal hosts with fixed carbon in the form of glucose.

View Article and Find Full Text PDF