Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.
Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7.
Congenital heart defects and skeletal malformations syndrome (CHDSKM) is a rare autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. CHDSKM is caused by germline mutations in ABL1. To date, three variants have been in association with CHDSKM.
View Article and Find Full Text PDFThe introduction of whole-exome sequencing into the Pediatric Genetics clinic has increased the identification of novel genes associated with neurodevelopmental disorders and congenital anomalies. This agnostic approach has shed light on multiple proteins and pathways not previously known to be associated with disease. Here we report eight subjects from six families with predicted loss of function variants in ZNF462, a zinc-finger protein of unknown function.
View Article and Find Full Text PDFPurpose: To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability.
Methods: Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production.
Objective: To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1 encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously reported patients.
Methods: We recruited newly diagnosed patients with STXBP1 mutations through an international network of clinicians and geneticists. Furthermore, we performed a systematic literature search to review the phenotypes of all previously reported patients.
We report two unrelated patients with overlapping chromosome 2q13 deletions (patient 1 in chr2:111415137-113194067 bp and patient 2 in chr2:110980342-113007823 bp, hg 19). Patient 1 presents with developmental delay, microcephaly and mild dysmorphic facial features, and patient 2 with autism spectrum disorder, borderline cognitive abilities, deficits in attention and executive functions and mild dysmorphic facial features. The mother and maternal grandmother of patient 1 were healthy carriers of the deletion.
View Article and Find Full Text PDFWe report on a 10-year-old-boy presenting with moderate intellectual disability (ID), impaired motor skills, hypotonia, growth delay, minor anomalies, misaligned teeth, pectus excavatum, small hands and feet, widely spaced nipples, and a 1.13 Mb de novo deletion on HSA12q12 (chr12:44,830,147-45,964,945 bp, hg19), deleting ANO6, NELL2, and DBX2 and the pseudogenes PLEKHA8P1 and RACGAP1P. We suggest DBX2 and NELL2 as disease-causing genes and their haploinsufficiency to be involved in the psychomotor delay in the patient.
View Article and Find Full Text PDF2p15p16.1-deletion syndrome was first described in 2007 based on the clinical presentation of two patients. The syndrome is characterized by intellectual disability, autism spectrum disorders, microcephaly, dysmorphic facial features and a variety of congenital organ defects.
View Article and Find Full Text PDFMEIS2 is a homeodomain-containing transcription factor of the TALE superfamily that has been proven important for development. We confirm and extend a recent single clinical report stating that deletions in MEIS2 can cause cleft palate [Crowley et al. (2010); Am J Med Genet 152A:1326-1327].
View Article and Find Full Text PDFWe report a 14 year old male patient ascertained for developmental delay, carrying a de novo pericentric inversion on chr(7)(p14.3q22.3).
View Article and Find Full Text PDFThe transcription factor SOX3 is widely expressed in early vertebrate brain development. In humans, duplication of SOX3 and polyalanine expansions at its C-terminus may cause intellectual disability and hypopituitarism. Sox3 knock-out mice show a variable phenotype including structural and functional anomalies affecting the branchial arches and midline cerebral structures such as the optic chiasm and the hypothalamo-pituitary axis.
View Article and Find Full Text PDFBackground: Nineteen patients with deletions in chromosome 6p22-p24 have been published so far. The syndromic phenotype is varied, and includes intellectual disability, behavioural abnormalities, dysmorphic features and structural organ defects. Heterogeneous deletion breakpoints and sizes (1-17 Mb) and overlapping phenotypes have made the identification of the disease causing genes challenging.
View Article and Find Full Text PDFWe report a 11 year old male patient ascertained for mild intellectual disability and minor dysmorphic features, carrying a 1 Mb de novo deletion on chromosome 11q13.1q13.2 detected by aCGH.
View Article and Find Full Text PDFThe 1q44 deletion syndrome has shown to be a recognizable phenotype with developmental delay, short stature and corpus callosum abnormalities as relatively consistent features. However, the disorder is still clinically heterogeneous and a genotype-phenotype correlation has been challenging to establish. In particular, a delineation of a critical region for the corpus callosum development has turned out to be difficult, and many candidate genes have been proposed.
View Article and Find Full Text PDFWe report on a 11-year-old boy investigated for a clinical suspicion of Angelman syndrome (AS) (OMIM 105830) who was found to carry a de novo interstitial deletion of chromosome 15q13.2q13.3.
View Article and Find Full Text PDF